Authors :
Shaza Fahmawi; Abed Elrahman Abu Dalu
Volume/Issue :
Volume 10 - 2025, Issue 6 - June
Google Scholar :
https://tinyurl.com/cbx5ne7m
DOI :
https://doi.org/10.38124/ijisrt/25jun1768
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Chronic anxiety disorders represent a significant public health concern due to their widespread prevalence and
debilitating effects on individuals' lives. Despite various therapeutic approaches, the management of these disorders remains
challenging due to factors like limited efficacy, side effects of medications, and individual variability in treatment responses.
Recent advances in nanotechnology, particularly in the development of smart neural electrodes, present a promising new
frontier for precision brain stimulation aimed at treating chronic anxiety disorders. This article explores the potential of
nanotechnology in designing these advanced neural electrodes for targeted brain stimulation. By reviewing the underlying
principles of nanotechnology, brain stimulation techniques, and their applications in treating anxiety, this work highlights
the innovative potential of precision medicine in enhancing therapeutic outcomes for anxiety patients.
Keywords :
Chronic Anxiety Disorders, Nanotechnology, Smart Neural Electrodes, Precision Brain Stimulation, Anxiety Treatment, Neurostimulation, Brain-Computer Interface, Advanced Therapeutics.
References :
- American Psychiatric Association. (2020). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). American Psychiatric Publishing.
- Baldwin, D. S., Waldman, S., & Allgulander, C. (2014). Evidence-based pharmacological treatment of generalized anxiety disorder. The International Journal of Neuropsychopharmacology, 14(5), 697–710. https://doi.org/10.1017/S1461145710001400
- Bandelow, B., Michaelis, S., & Wedekind, D. (2017). Treatment of anxiety disorders. Dialogues in Clinical Neuroscience, 19(2), 93–107. https://doi.org/10.31887/DCNS.2017.19.2/bbandelow
- Becker, E. S., Rinck, M., & Margraf, J. (2021). The role of learning in the etiology and maintenance of anxiety disorders. Current Psychiatry Reports, 23(5), 25–36. https://doi.org/10.1007/s11920-021-01236-7
- Bremner, J. D. (2006). Traumatic stress: Effects on the brain. Dialogues in Clinical Neuroscience, 8(4), 445–461. https://doi.org/10.31887/DCNS.2006.8.4/jbremner
- Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2018). Efficacy of transcranial direct current stimulation for treating anxiety and depression. Neuron, 100(2), 313–325. https://doi.org/10.1016/j.neuron.2018.09.011
- Goldin, P. R., Ziv, M., Jazaieri, H., & Gross, J. J. (2013). Cognitive reappraisal self-efficacy mediates the effects of individual cognitive-behavioral therapy for social anxiety disorder. Journal of Consulting and Clinical Psychology, 81(1), 109–117. https://doi.org/10.1037/a0031212
- Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33(6), 693–710. https://doi.org/10.1016/j.psyneuen.2008.03.008
- Hofmann, S. G., Asnaani, A., Vonk, I. J. J., Sawyer, A. T., & Fang, A. (2012). The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognitive Therapy and Research, 36(5), 427–440. https://doi.org/10.1007/s10608-012-9476-1
- Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992). The genetic epidemiology of phobias in women: The interrelationship of agoraphobia, social phobia, situational phobia, and simple phobia. Archives of General Psychiatry, 49(4), 273–281. https://doi.org/10.1001/archpsyc.1992. 01820040031005
- Kuyken, W., Warren, F., Taylor, R. S., Whalley, B., Crane, C., Bondolfi, G., Hayes, R., Huijbers, M., Ma, H., Schweizer, S., Segal, Z., Speckens, A., & Teasdale, J. D. (2019). Efficacy of mindfulness-based cognitive therapy in prevention of depressive relapse: An individual patient data meta-analysis from randomized trials. JAMA Psychiatry, 73(6), 565–574. https://doi.org/10.1001/jamapsychiatry.2016.0076
- Li, X., Cao, Y., Yang, Y., & Jiang, Y. (2021). Smart nanomaterials for neural interfaces. Advanced Functional Materials, 31(23), 2100131. https://doi.org/10.1002/adfm.202100131
- Mayo, L. M., Asratian, A., Linde, J., Holm, L., Kullberg, J., Amini, N., Augier, E., & Heilig, M. (2022). Elevated neuroinflammatory markers in anxiety disorders. Nature Communications, 13(1), 2137. https://doi.org/10.1038/s41467-022-29927-2
- Müller, N., Schwarz, M. J., & Riedel, M. (2019). A role for immune mechanisms in psychiatric disorders. Dialogues in Clinical Neuroscience, 21(1), 3–14. https://doi.org/10.31887/DCNS.2019.21.1/nmuller
- Nitsche, M. A., Bikson, M., & Bestmann, S. (2018). Transcranial direct current stimulation: State of the art 2020. Brain Stimulation, 11(2), 240–250. https://doi.org/10.1016/j.brs.2017.12.003
- Shin, L. M., Bush, G., Milad, M. R., Lasko, N. B., Brohawn, K. H., Hughes, K. C., Macklin, M. L., Gold, A. L., Karpf, R. D., Orr, S. P., Pitman, R. K., & Rauch, S. L. (2011). Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: A monozygotic twin study of posttraumatic stress disorder. American Journal of Psychiatry, 168(9), 979–985. https://doi.org/10.1176/appi.ajp.2011.09121812
- Stein, M. B., Chen, C. Y., Ursano, R. J., Cai, T., Gelernter, J., Heeringa, S. G., Jain, S., Jensen, K. P., Maihofer, A. X., Mitchell, C., Nievergelt, C. M., Nock, M. K., Neale, B. M., Reisner, S. L., Sun, X., Kessler, R. C., & Smoller, J. W. (2017). Genome-wide association studies of posttraumatic stress disorder in 2 cohorts of US Army soldiers. JAMA Psychiatry, 73(7), 695–704. https://doi.org/10.1001/jamapsychiatry.2016.0350
- Xu, M., Wang, X., Wu, Y., Liu, J., & Liu, Y. (2020). Nanomaterial-enabled neuromodulation for brain-machine interfaces. Advanced Functional Materials, 30(3), 1907375. https://doi.org/10.1002/adfm.201907375
- Zhang, Q., Yu, C., Xu, X., Gao, Y., Lin, Y., & Wang, H. (2020). Deep brain stimulation for treatment-resistant anxiety: A pilot study. Neurotherapeutics, 17(2), 844–852. https://doi.org/10.1007/s13311-020-00840-1
Chronic anxiety disorders represent a significant public health concern due to their widespread prevalence and
debilitating effects on individuals' lives. Despite various therapeutic approaches, the management of these disorders remains
challenging due to factors like limited efficacy, side effects of medications, and individual variability in treatment responses.
Recent advances in nanotechnology, particularly in the development of smart neural electrodes, present a promising new
frontier for precision brain stimulation aimed at treating chronic anxiety disorders. This article explores the potential of
nanotechnology in designing these advanced neural electrodes for targeted brain stimulation. By reviewing the underlying
principles of nanotechnology, brain stimulation techniques, and their applications in treating anxiety, this work highlights
the innovative potential of precision medicine in enhancing therapeutic outcomes for anxiety patients.
Keywords :
Chronic Anxiety Disorders, Nanotechnology, Smart Neural Electrodes, Precision Brain Stimulation, Anxiety Treatment, Neurostimulation, Brain-Computer Interface, Advanced Therapeutics.