Pareto Set Learning for Multi-Objective Reinforcement Learning Applied to Autoadaptive Duty Cycle in Medical Wearable Technology


Authors : H. A. Ramasombohitra; H. N. Ramanantsihoarana

Volume/Issue : Volume 10 - 2025, Issue 12 - December


Google Scholar : https://tinyurl.com/2anhafps

Scribd : https://tinyurl.com/5n89t9d8

DOI : https://doi.org/10.38124/ijisrt/25dec1251

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Portable medical devices designed for continuous monitoring of physiological parameters face a critical trade-off between energy autonomy and monitoring quality. This study presents an adaptive energy management approach based on the Pareto Set Learning - Multi-Objective Reinforcement Learning (PSL-MORL) algorithm for a system powered by photovoltaic solar energy recovery. The proposed approach dynamically generates Duty Cycle (DC) modulated according to the wearer's National Early Warning Score 2 (NEWS2), simultaneously targeting 24-hour energy neutrality operational (ENO) and compliance with clinical recommendations. A comparative study using MATLAB simulation evaluates three strategies: the PSL-MORL algorithm, an intensive monitoring policy (D = 14.3%), and an energy-saving policy (DC = 5.26%). The results demonstrate that the proposed approach guarantees 24-hours autonomy (+42.9% vs. intensive policy), improves the average NEWS2 compliance reward by 58.4% compared to the energy-saving policy, and optimizes the allocation of 142 measurements over clinically critical periods. These performances validate the effectiveness of the PSL- MORL algorithm in reconciling the energy and clinical constraints of autonomous portable medical devices.

Keywords : Adaptive Power Management, Energy-Aware Scheduling, IoWT, MORL, Pareto Set Learning, Physiological Monitoring.

References :

  1. A. Esteva et al., « A guide to deep learning in healthcare », Nat. Med., vol. 25, no 1, p. 24‑29, janv. 2019, doi: 10.1038/s41591-018-0316-z.
  2. E. J. Topol, « High-performance medicine: the convergence of human and artificial intelligence », Nat. Med., vol. 25, no 1, p. 44‑56, janv. 2019, doi: 10.1038/s41591-018-0300-7.
  3. N. Mehta et A. Pandit, « Concurrence of big data analytics and healthcare: A systematic review », Int. J. Med. Inf., vol. 114, p. 57‑65, juin 2018, doi: 10.1016/j.ijmedinf.2018.03.013.
  4. P. Szántó, T. Kiss, et K. J. Sipos, « Energy-efficient AI at the Edge », in 2022 11th Mediterranean Conference on Embedded Computing (MECO), juin 2022, p. 1‑6. doi: 10.1109/MECO55406.2022.9797178.
  5. A. Ometov et al., « A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges », Comput. Netw., vol. 193, p. 108074, juill. 2021, doi: 10.1016/j.comnet.2021.108074.
  6. W. B. Qaim et al., « Towards Energy Efficiency in the Internet of Wearable Things: A Systematic Review », IEEE Access, vol. 8, p. 175412‑175435, 2020, doi: 10.1109/ACCESS.2020.3025270.
  7. F. K. Shaikh et S. Zeadally, « Energy harvesting in wireless sensor networks: A comprehensive review », Renew. Sustain. Energy Rev., vol. 55, p. 1041‑1054, mars 2016, doi: 10.1016/j.rser.2015.11.010.
  8. S. Shresthamali, M. Kondo, et H. Nakamura, « Adaptive Power Management in Solar Energy Harvesting Sensor Node Using Reinforcement Learning », ACM Trans. Embed. Comput. Syst., vol. 16, no 5s, p. 181:1-181:21, sept. 2017, doi: 10.1145/3126495.
  9. O. Veligorskyi, M. Khomenko, R. Chakirov, et Y. Vagapov, « Performance analysis of a wearable photovoltaic system », in 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), janv. 2018, p. 376‑381. doi: 10.1109/IESES.2018.8349905.
  10. J. Ortegón-Aguilar et al., « Multimodal Power Management Based on Decision Tree for Internet of Wearable Things Systems », Appl. Sci., vol. 13, no 7, Art. no 7, janv. 2023, doi: 10.3390/app13074351.
  11. « nRF52840 ». Consulté le: 22 novembre 2025. [En ligne]. Disponible sur: https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-Dongle-product-brief.pdf
  12. S. Mohsen, A. Zekry, K. Youssef, et M. Abouelatta, « A Self-powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications », Wirel. Pers. Commun., vol. 116, no 4, p. 3143‑3164, févr. 2021, doi: 10.1007/s11277-020-07840-y.
  13. O. B. Akan, O. Cetinkaya, C. Koca, et M. Ozger, « Internet of Hybrid Energy Harvesting Things », IEEE Internet Things J., vol. 5, no 2, p. 736‑746, avr. 2018, doi: 10.1109/JIOT.2017.2742663.
  14. R. D. Middlebrook et S. Cuk, « A general unified approach to modelling switching-converter power stages », in 1976 IEEE Power Electronics Specialists Conference, juin 1976, p. 18‑34. doi: 10.1109/PESC.1976.7072895.
  15. D. Hussein, G. Bhat, et J. R. Doppa, « Adaptive Energy Management for Self-Sustainable Wearables in Mobile Health », Proc. AAAI Conf. Artif. Intell., vol. 36, no 11, Art. no 11, juin 2022, doi: 10.1609/aaai.v36i11.21451.
  16. B. Martinez, M. Monton, I. Vilajosana, et J. D. Prades, « The Power of Models: Modeling Power Consumption for IoT Devices », IEEE Sens. J., vol. 15, no 10, p. 5777‑5789, oct. 2015, doi: 10.1109/JSEN.2015.2445094.
  17. C. F. Hayes et al., « A practical guide to multi-objective reinforcement learning and planning », Auton. Agents Multi-Agent Syst., vol. 36, no 1, p. 26, avr. 2022, doi: 10.1007/s10458-022-09552-y.
  18. Y. Rioual, Y. Le Moullec, J. Laurent, M. Khan, et J.-P. Diguet, Design and Comparison of Reward Functions in Reinforcement Learning for Energy Management of Sensor Nodes. 2021. doi: 10.48550/arXiv.2106.01114.
  19. E. Liu et al., « Pareto set learning for multi-objective reinforcement learning », in Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence, in AAAI’25/IAAI’25/EAAI’25, vol. 39. AAAI Press, févr. 2025, p. 18789‑18797. doi: 10.1609/aaai.v39i18.34068.
  20. C. Qian, Y. Yu, et Z.-H. Zhou, « On constrained boolean pareto optimization », in Proceedings of the 24th International Conference on Artificial Intelligence, in IJCAI’15. Buenos Aires, Argentina: AAAI Press, juill. 2015, p. 389‑395.
  21. X. Lin, Z. Yang, et Q. Zhang, « Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization », présenté à International Conference on Learning Representations, oct. 2021.
  22. D. M. Roijers, P. Vamplew, S. Whiteson, et R. Dazeley, « A Survey of Multi-Objective Sequential Decision-Making », J. Artif. Intell. Res., vol. 48, p. 67‑113, oct. 2013, doi: 10.1613/jair.3987.
  23. K. Van Moffaert, M. M. Drugan, et A. Nowé, « Scalarized multi-objective reinforcement learning: Novel design techniques », in 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), avr. 2013, p. 191‑199. doi: 10.1109/ADPRL.2013.6615007.
  24. S. Natarajan et P. Tadepalli, « Dynamic preferences in multi-criteria reinforcement learning », in Proceedings of the 22nd international conference on Machine learning, in ICML ’05. New York, NY, USA: Association for Computing Machinery, août 2005, p. 601‑608. doi: 10.1145/1102351.1102427.
  25. C. Liu, X. Xu, et D. Hu, « Multiobjective Reinforcement Learning: A Comprehensive Overview », IEEE Trans. Syst. Man Cybern. Syst., vol. 45, no 3, p. 385‑398, mars 2015, doi: 10.1109/TSMC.2014.2358639.
  26. P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, et E. Dekker, « Empirical evaluation methods for multiobjective reinforcement learning algorithms », Mach Learn, vol. 84, no 1‑2, p. 51‑80, juill. 2011, doi: 10.1007/s10994-010-5232-5.

Portable medical devices designed for continuous monitoring of physiological parameters face a critical trade-off between energy autonomy and monitoring quality. This study presents an adaptive energy management approach based on the Pareto Set Learning - Multi-Objective Reinforcement Learning (PSL-MORL) algorithm for a system powered by photovoltaic solar energy recovery. The proposed approach dynamically generates Duty Cycle (DC) modulated according to the wearer's National Early Warning Score 2 (NEWS2), simultaneously targeting 24-hour energy neutrality operational (ENO) and compliance with clinical recommendations. A comparative study using MATLAB simulation evaluates three strategies: the PSL-MORL algorithm, an intensive monitoring policy (D = 14.3%), and an energy-saving policy (DC = 5.26%). The results demonstrate that the proposed approach guarantees 24-hours autonomy (+42.9% vs. intensive policy), improves the average NEWS2 compliance reward by 58.4% compared to the energy-saving policy, and optimizes the allocation of 142 measurements over clinically critical periods. These performances validate the effectiveness of the PSL- MORL algorithm in reconciling the energy and clinical constraints of autonomous portable medical devices.

Keywords : Adaptive Power Management, Energy-Aware Scheduling, IoWT, MORL, Pareto Set Learning, Physiological Monitoring.

CALL FOR PAPERS


Paper Submission Last Date
31 - January - 2026

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe