Personal Protective Equipment Detection for Grinding Machine Workers Based on Computer Vision


Authors : Raisa Zahra Salsabila; Desna Fitria Devi; Faiza Pramudia Ardani; Rama Putra Adithya; Yesica Stefany Yuniar Tanrian; Sulfan Bagus Setyawan; Hanum Arrosida; Rendi Pambudi Wicaksono

Volume/Issue : Volume 9 - 2024, Issue 7 - July


Google Scholar : https://tinyurl.com/bddcdcfh

Scribd : https://tinyurl.com/yc8zemvt

DOI : https://doi.org/10.38124/ijisrt/IJISRT24JUL1624

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Negligence in the use of Personal Protective Equipment for workers is one factor the occurrence of work accidents, especially in manufacturing industries such as grinding process. There has been research carried out to develop it Personal Protective Equipment detection system, but there is still no research specifically in the grinding machine area and there is no system that can take it. decisions from results that have been detected so that no action has been taken directly from worker negligence. In an effort to improve the safety of the workers and reduce the risk of work accidents, especially for workers grinding machine, the author in this final project created a Detection System Design Negligence in the Use of Personal Protective Equipment for Based Grinding Machine Workers Computer Vision using the You Only Look Once v5s detection model (YOLOv5s). This system is able to identify grinding machine workers wearing earmuffs, face shields, masks, gloves, and those who do not use or no earmuff, no face shield, no mask, and no gloves. From overall testing obtained (Frame Per Second) the highest FPS of 2.25 FPS from the image size 256, at an optimal distance of 3 meters with 88% accuracy and light intensity of 600 lux with 76% accuracy run using NVIDIA Jetson Nano 2GB and Logitech C270 webcam.

Keywords : Personal Protective Equipment Grinding, Work Accidents, Objects Detection.

References :

  1. Berita update. (2023). Pengertian Alat Pelindung Diri (APD) dan Jenis-jenisnya. kumparan. https:// kumparan.com/berita-update/pengertian-alat-pelind ungdiri-apd-dan-jenis-jenisnya-21EObDKjW9W
  2. Nurhidayati, Z. A. (2021). Inspektorat Jenderal. https://itjen.pu.go.id/welcome/kolom_read/108
  3. Baladewa. (2023, February 23). Jenis Alat Pelindung Diri dan Fungsinya Masing— Masing.Blog Bhinneka. https://www.bhinneka.com/blog/jenisalat[1]pelindung-diri-dan-fungsinya-masing-masing/
  4. .Laily, M. E., Fajri, F. N., & Pratamasunu, G. Q. O. (2022). Deteksi Penggunaan Alat Pelindung Diri (APD) Untuk Keselamatan dan Kesehatan Kerja Menggunakan Metode Mask Region Convolutional Neural Network (Mask R-CNN). Jurnal Komputer Terapan,8(2),279–288. https://doi.org/10.35143/jkt. v8i2.5732
  5. .Geograf. (2023, November 21). Pengertian Kecelakaan Kerja Menurut Undang Undang: Definisi dan Penjelasan Lengkap Menurut Ahli. Geograf. https://geograf.id/jelaskan/pengertian-kecelakaan-kerja-menurut-undang[1]undang/
  6. Yuliani, I., & Amalia, R. (2019). Faktor-Faktor yang Berhubungan Dengan Perilaku Pekerja dalam Penggunaan Alat Pelindung Diri (APD). Jurnal Ilmu Kesehatan Masyarakat, 8(01), 14–19. https://doi.org/ 10.33221/jikm.v8i01.204
  7. Nudin, M. I., & Andesta, D. (2023). Upaya Pencegahan Kecelakaan Kerja Menggunakan Metode Job Safety Analysis Pada Departemen Fabrikasi. Jurnal Teknik Industri: Jurnal Hasil Penelitian dan Karya Ilmiah dalam  Bidang Teknik Industri, 9(1), 51. https://doi.org/10.24014/jti.v9i1.21920
  8. Administrator. (2023, November 7). OHSAS 18001 UK: Standar Keselamatan dan Kesehatan Kerja yang Komprehensif. Inspeksi. https://www.inspeksi.co.id/ ohsas-18001-uk-standar-keselamatan-dan[1]kesehatan-kerja-yang-komprehensif/.
  9. LiuJuniarti, S., & Umar, A. F. (2022). Gambaran Potensi Bahaya dan Kecelakaan Kerja serta Analisis Penilaian Risiko di Pabrik Fabrikasi Baja PT Wika Industri dan Konstruksi. Jurnal Persada Husada Indonesia, 9(34), 13–24.  https://doi.org/10.56014/ jphi.v9i34.349
  10. Muhaimin, M., & Sen, T. W. (2021). Real-Time Detection of Face Masked and Face  Shield Using YOLO Algorithm with Pre-Trained Model and Darknet. 4(2).
  11. Nurfirmansyah, A., & Dijaya, R. (2022). DETEKSI KELALAIAN ALAT  PELINDUNG DIRI (APD) PADA PEKERJA KONTRUKSI BANGUNAN
  12. Djaohar, M., & Sunawar, A. (2022). RANCANG BANGUN PENGECEKAN ALAT PELINDUNG DIRI MENGGUNAKAN ALGORITMA YOU ONLY LOOK ONCE (YOLO)
  13. Ryandika. (2023). DETEKSI ALAT PELINDUNG DIRI PADA FABRICATION WORKSHOP DI WELDING AREA BERBASIS IMAGE PROCESSING.
  14.  Mulyawan, R. (2021, November 8). Computer Vision Adalah: Pengertian, Jenis,Contoh dan Perbedaannya! Rifqi Mulyawan.  https://rifqimulyawan.com/blog/ computer-vision/

Negligence in the use of Personal Protective Equipment for workers is one factor the occurrence of work accidents, especially in manufacturing industries such as grinding process. There has been research carried out to develop it Personal Protective Equipment detection system, but there is still no research specifically in the grinding machine area and there is no system that can take it. decisions from results that have been detected so that no action has been taken directly from worker negligence. In an effort to improve the safety of the workers and reduce the risk of work accidents, especially for workers grinding machine, the author in this final project created a Detection System Design Negligence in the Use of Personal Protective Equipment for Based Grinding Machine Workers Computer Vision using the You Only Look Once v5s detection model (YOLOv5s). This system is able to identify grinding machine workers wearing earmuffs, face shields, masks, gloves, and those who do not use or no earmuff, no face shield, no mask, and no gloves. From overall testing obtained (Frame Per Second) the highest FPS of 2.25 FPS from the image size 256, at an optimal distance of 3 meters with 88% accuracy and light intensity of 600 lux with 76% accuracy run using NVIDIA Jetson Nano 2GB and Logitech C270 webcam.

Keywords : Personal Protective Equipment Grinding, Work Accidents, Objects Detection.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe