Authors :
Dr. Ganesh Deshmukh; Atharva Gogawale; Pranav Kinage
Volume/Issue :
Volume 9 - 2024, Issue 4 - April
Google Scholar :
https://tinyurl.com/26x4u64h
Scribd :
https://tinyurl.com/3hcjbu8h
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24APR1825
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
The gut microbiota, comprising a diverse
array of bacteria, viruses, fungi, and archaea, inhabits the
gastrointestinal tract of humans and other animals,
exerting a profound influence on various physiological
functions. This intricate ecosystem, characterized by its
heterogeneity and resilience, plays a pivotal role in
maintaining overall health. Through a mutualistic
relationship with the host, the gut microbiota contributes
to the production of short-chain fatty acids and
participates in carbohydrate metabolism, thus
influencing energy metabolism and inflammatory
processes. Moreover, it actively modulates the immune
system, promoting a balanced and well-functioning
immune response while providing defense against
invading pathogens. Importantly, disruptions in the
composition and diversity of the gut microbiota have been
implicated in the pathogenesis of numerous chronic
diseases, including inflammatory bowel disease, obesity,
diabetes, and neurological disorders. Understanding and
harnessing the potential of the gut flora hold promise for
developing preventive and therapeutic strategies for these
conditions. This abstract highlights the multifaceted roles
of gut microbiota in human health and underscores the
importance of further research in this field for advancing
public health initiatives.
References :
- Zamberi N.R., Abu N., Mohamed N.E., Nordin N., Keong Y.S., Beh B.K., Zakaria Z.A.B., Nik Abdul Rahman N.M.A., Alitheen N.B. The Antimetastatic and Antiangiogenesis Effects of Kefir Water on Murine Breast Cancer Cells. Integer. Cancer Ther. 2016;15:NP53–NP66. Doi: 10.1177/1534735416642862.
- Garofalo C., Ferrocino I., Reale A., Sabbatini R., Milanović V., Alkić-Subašić M., Boscaino F., Aquilanti L., Pasquini M., Trombetta M.F., et al. Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res. Int. 2020;137:109369. Doi: 10.1016/j.foodres.2020.109369.
- Prado M.R., Blandón L.M., Vandenberghe L.P.S., Rodrigues C., Castro G.R., Thomaz-Soccol V., Soccol C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015;6:1–10. Doi: 10.3389/fmicb.2015.01177.
- Fiorda F.A., de Melo Pereira G.V., Thomaz-Soccol V., Rakshit S.K., Pagnoncelli M.G.B., Vandenberghe L.P.d.S., Soccol C.R. Microbiological, biochemical, and functional aspects of sugary kefir fermentation—A review. Food Microbiol. 2017;66:86–95. Doi: 10.1016/j.fm.2017.04.004.
- Kesenkaş H., Gürsoy O., Özbaş H. Kefir. Fermented Foods in Health and Disease Prevention. Academic Press; Cambridge, MA, USA: 2017. Pp. 339–361. [Google Scholar] Park KY, Jeong JK, Lee YE, Daily JW 3rd. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food. 2014 Jan;17(1):6-20. Doi: 10.1089/jmf.2013.3083. PMID: 24456350.(kimchi )
- (Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14(8), e1002533. doi:10.1371/journal.pbio.1002533.)
- World J Gastroenterol. 2015 Aug 7; 21(29): 8787–8803. Published online 2015 Aug 7. doi: 10.3748/wjg.v21.i29.8787
- Front. Nutr., 03 January 2022 Sec. Nutritional Immunology Volume 8 - 2021 | https://doi.org/10.3389/fnut.2021.634897
- (Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., ... Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. doi:10.1038/nrgastro.2017.75.)
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834882/#:~:text=Inulin%20and%20oligofructose%20are%20classes,hydrolysis%20and%20transglycosylation%20of%20sucrose. [doi: 10.1002/fsn3.3040]Published online 2022 Sep 15]’:
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105622/#:~:text=Galactooligosaccharides%20(GOS)%20are%20an%20important,prebiotic%20ingredients%20in%20rat%20diet. doi: 10.17113/ftb.54.02.16.4292
- (Sako T, Matsumoto K, Tanaka R. Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int Dairy J. 1999;9:69–80. 10.1016/S0958-6946(99)00046-1)
- Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17:259–75. 10.1079/NRR200479
- The Journal of Phytopharmacology 2023; 12(6):425-429 Online at: www.phytopharmajournal.com The Journal of Phytopharmacology 2023; 12(6):425-429.
- Parekh SL, Balakrishnan S, Hati S, Aparnathi KD. Lactulose: Significance in Milk and Milk Products. International Journal of Current Microbiology and Applied Sciences. 2016;5:721–32. Available from: https://doi.org/10.20546/ijcmas.2016.511.083
- Journal of Phytopharmacology 2023; 12(6):425-429 Online at: www.phytopharm journal.com)
- https://www.researchgate.net/publication/271023644_The_potential_of_resistant_starch_as_a_prebiotic DOI: 10.3109/07388551.2014.993590
- Gibson GR, Probert HM, Loo JV, et al. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 17, 259–75.
- The potential of resistant starch as a prebiotic Crit Rev Biotechnol, Early Online: 1–7 2015 Informa Healthcare USA, Inc. DOI: 10.3109/07388551.2014.993590
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539293/#:~:text=Probiotics%20 may%20 induce%20 changes%20in,clinical%20 benefits%20in%20the%20host.doi: 10.1177/1756283X12459294
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539293/#:~:text=Probiotics%20 may%20 induce%20 changes%20in,clinical%20benefits%20in%20the%20host.
- Bienenstock J., Collins S. (2010) 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Psycho-Neuroimmunology and the Intestinal Microbiota: Clinical observations and basic mechanisms. Cli Exp Immunol 160: 85–91
- Bron P., Van Baarlen P., Kleerebezem M. (2011) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10: 66–78
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180739/#:~:text=Dietary%20fiber%2C%20 prebiotic%20 fibre%20 supplements,as%20showing%20in%20 Figure%202.&text=Established%20 strategies%20that%20can%20be,of%20short%2Dchain%20booty%20 acids. doi: 10.3390/nu15092211 PMCID: PMC10180739 Gary David Lopaschuk, Academic Editor.
- Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550 .
- Ianiro G., Bruno G., Lopetuso L., Beghelli F.B., Laterza L., D’Aversa F., Gigante G., Cammarota G., Gasbarrini A. Role of yeasts in healthy and impaired gut microbiota: The gut mycome. Curr. Pharm. Des. 2014;20:4565–4569. doi: 10.2174/13816128113196660723.
- Viggiano D., Ianiro G., Vanella G., Bibbò S., Bruno G., Simeone G., Mele G. Gut barrier in health and disease: Focus on childhood. Eur. Rev. Med. Pharmacol. Sci. 2015;19:1077–1085.
- 46. Meira L.B., Bugni J.M., Green S.L., Lee C.-W., Pang B., Borenshtein D., Rickman B.H., Rogers A.B., Moroski-Erkul C.A., McFaline J.L., et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Investig. 2008;118:2516–2525. doi: 10.1172/JCI35073.
- C. C. Dodoo, J. Wang, A. W. Basit, P. Stapleton, and S. Gaisford, “Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation,” International Journal of Pharmaceutics, vol. 530, no. 1-2, pp. 224–229, 2017.
- E. F. Murphy, P. D. Cotter, A. Hogan et al., “Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity,” Gut, vol. 62, no. 2, pp. 220–226, 2013
- C. C. Dodoo, J. Wang, A. W. Basit, P. Stapleton, and S. Gaisford, “Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation,” International Journal of Pharmaceutics, vol. 530, no. 1-2, pp. 224–229,
- E. F. Murphy, P. D. Cotter, A. Hogan et al., “Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity,” Gut, vol. 62, no. 2, pp. 220–226, 2013
- Article ID 1984200 | https://doi.org/10.1155/2023/1984200
The gut microbiota, comprising a diverse
array of bacteria, viruses, fungi, and archaea, inhabits the
gastrointestinal tract of humans and other animals,
exerting a profound influence on various physiological
functions. This intricate ecosystem, characterized by its
heterogeneity and resilience, plays a pivotal role in
maintaining overall health. Through a mutualistic
relationship with the host, the gut microbiota contributes
to the production of short-chain fatty acids and
participates in carbohydrate metabolism, thus
influencing energy metabolism and inflammatory
processes. Moreover, it actively modulates the immune
system, promoting a balanced and well-functioning
immune response while providing defense against
invading pathogens. Importantly, disruptions in the
composition and diversity of the gut microbiota have been
implicated in the pathogenesis of numerous chronic
diseases, including inflammatory bowel disease, obesity,
diabetes, and neurological disorders. Understanding and
harnessing the potential of the gut flora hold promise for
developing preventive and therapeutic strategies for these
conditions. This abstract highlights the multifaceted roles
of gut microbiota in human health and underscores the
importance of further research in this field for advancing
public health initiatives.