Authors :
Ramanantsihoarana Harisoa Nathalie; Rastefano Elisée
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/2kwmrfrt
Scribd :
https://tinyurl.com/32t3cmk8
DOI :
https://doi.org/10.38124/ijisrt/25sep1045
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
This work introduces a detailed framework for a three-phase multilevel converter that incorporates model
predictive control (MPC) to improve power conversion efficiency. The developed MPC approach utilizes a comprehensive
cost function designed to achieve multiple objectives: accurate current control, reduction of circulating currents, and
maintaining balanced capacitor voltages—all without requiring traditional modulation components. Testing performed
using MATLAB/Simulink validates the system's capabilities, confirming the production of six distinct voltage levels,
proper capacitor voltage regulation within design specifications. The control methodology demonstrates reliable operation
during varying operating conditions, particularly when subjected to abrupt DC voltage changes that replicate practical
scenarios like fluctuating solar panel output conditions.
Keywords :
Average Value Model, Power Electronics, Voltage Balancing, Three-Phase Systems, Switching Frequency Optimization.
References :
- M. G. a. R. Marquardt, «A New AC/AC Multilevel Converter Family,» IEEE Trans. Ind. Electron., vol. 52, n° , pp. 662-669, Jun. 2005.
- B. W. R. L. F. M. P. a. N. R. Z. A. Dekka, «Evolution of Topologies, Modeling,Control Schemes, and Applications of Modular Multilevel Converters,» IEEE J. Emerg. Sel. Top. Power Electron, doi: 10.1109/JESTPE.2017.2742938, vol. 5, n° , p. 1631–1656, Dec. 2017.
- J. A. Ferreira, «The Multilevel Modular DC Converter,» IEEE Trans. Power Electron.,doi: 10.1109/TPEL.2012.2237413, vol. 28, n° 0, p. 4460–4465, Oct. 2013.
- E. F. C. a. C. Bordons, Model predictive control, London, New York: Springer, 2004.
- A. L. a. M. L. R. Kennel, «Generalized predictive control (GPC)-ready for use in drive applications?,» IEEE 32nd Annual Power Electronics Specialists Conference , vol. 4, p. 1839–1844, Jun. 2001.
- S. Mariethoz and M. Morari, «Explicit Model-Predictive Control of a PWM Inverter With an LCL filter,» IEEE Trans. Ind. Electron., vol. 56, n° , p. 389–399, Feb. 2009.
- B. Z. Y. W. G. Li, «A modified modular multilevel converter with reduced capacitor voltage fluctuation’,» EEE Trans. Ind. Electron., p. 6108–6119, 2015.
- K. L. Y. Z. Z. Wang, «Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter,» IEEE Trans. Ind. Electron.,, vol. 60, n° , p. 1943–1954, 2013.
This work introduces a detailed framework for a three-phase multilevel converter that incorporates model
predictive control (MPC) to improve power conversion efficiency. The developed MPC approach utilizes a comprehensive
cost function designed to achieve multiple objectives: accurate current control, reduction of circulating currents, and
maintaining balanced capacitor voltages—all without requiring traditional modulation components. Testing performed
using MATLAB/Simulink validates the system's capabilities, confirming the production of six distinct voltage levels,
proper capacitor voltage regulation within design specifications. The control methodology demonstrates reliable operation
during varying operating conditions, particularly when subjected to abrupt DC voltage changes that replicate practical
scenarios like fluctuating solar panel output conditions.
Keywords :
Average Value Model, Power Electronics, Voltage Balancing, Three-Phase Systems, Switching Frequency Optimization.