Predictive Modeling for Portfolio Risk Assessment in Multi-Therapeutic Pharmaceutical Enterprises


Authors : Ezichi Adanna Anokwuru; Joy Onma Enyejo

Volume/Issue : Volume 10 - 2025, Issue 11 - November


Google Scholar : https://tinyurl.com/2mamxww7

Scribd : https://tinyurl.com/3her3zd4

DOI : https://doi.org/10.38124/ijisrt/25nov1475

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Pharmaceutical enterprises operating across multiple therapeutic areas face increasingly complex risk environments driven by evolving regulatory policies, global market volatility, and shifting R&D productivity dynamics. This review presents a comprehensive examination of predictive modeling frameworks designed to enhance portfolio risk assessment for multi-therapeutic organizations, with emphasis on oncology, cardiovascular, and vaccine development pipelines. The paper evaluates the application of Python-based Monte Carlo simulations for probabilistic forecasting of clinical success rates, cost overruns, regulatory delays, and market adoption uncertainties. Additionally, Bayesian network models are analyzed as tools for representing causal dependencies among scientific, operational, and macroeconomic variables that influence therapeutic portfolio performance. The integration of these quantitative methods provides a robust foundation for stress-testing strategic investment decisions, optimizing resource allocation, and supporting evidence-based governance under varying policy scenarios. By synthesizing current methodologies, case applications, and computational best practices, this review highlights emerging opportunities for data-driven risk intelligence in pharmaceutical portfolio management. The findings underscore the need for adaptive, transparent, and scalable analytical systems capable of guiding long-term enterprise decision-making amidst global health and economic disruptions.

Keywords : Portfolio Risk Assessment; Monte Carlo Simulation; Bayesian Networks; Multi-Therapeutic Pharmaceuticals; Predictive Modeling.

References :

  1. Ajayi-Kaffi, O., & Buyurgan, N. (2024). Is Agile Methodology Better Than Waterfall in Enhancing Communication in Healthcare Process Improvement Projects? International Journal of Research Publication and Reviews, 5(11), 3648–3651.
  2. Akinleye, K. E., Jinadu, S. O., Onwusi, C. N., Omachi, A., & Ijiga, O. M. (2023). Integrating Smart Drilling Technologies with Real-Time Logging Systems. International Journal of Scientific Research in Science, Engineering and Technology, 11(4). https://doi.org/10.32628/IJSRST2411429
  3. Amebleh, J. & Omachi, A. (2022). Data Observability for High-Throughput Payments Pipelines: SLA Design, Anomaly Budgets, and Sequential Probability Ratio Tests. International Journal of Scientific Research in Science, Engineering and Technology, 9(4), 576–591. https://doi.org/10.32628/IJSRSET
  4. Amebleh, J. (2024). Latency-Aware, Tokenization-First Payment Orchestration for Telehealth: Idempotency Guarantees, PCI/HIPAA Telemetry, and End-to-End Latency SLOs. Global Journal of Engineering, Science & Social Science Studies, 9(9). http://doi.org/10.63665/gjess.v09i9.1
  5. Amebleh, J., & Okoh, O. F. (2023). Explainable Risk Controls for Digital Health Payments: SHAP-Constrained Gradient Boosting with Policy-Based Access, Audit Trails, and Chargeback Mitigation. International Journal of Scientific Research and Modern Technology, 2(4), 13–28. https://doi.org/10.38124/ijsrmt.v2i4.746
  6. Amebleh, J., & Omachi, A. (2023). Integrating Financial Planning and Payments Data Fusion. International Journal of Scientific Research and Modern Technology, 2(4), 1–12. https://doi.org/10.38124/ijsrmt.v2i4.752
  7. Ajayi, J. O., Omidiora, M. T., Addo, G., & Peter-Anyebe, A. C. (2019). Prosecutability of the Crime of Aggression: Another Declaration in a Treaty or an Achievable Norm? International Journal of Applied Research in Social Sciences, 1(6), 237–252.
  8. Amebleh, J., Igba, E., & Ijiga, O. M. (2021). Graph-Based Fraud Detection in Open-Loop Gift Cards: Heterogeneous GNNs, Streaming Feature Stores, and Near-Zero-Lag Anomaly Alerts. International Journal of Scientific Research in Science, Engineering and Technology, 8(6).
  9. Angelo, J. S., Guedes, I. A., Barbosa, H. J., & Dardenne, L. E. (2023). Multi-and many-objective optimization: present and future in de novo drug design. Frontiers in Chemistry11, 1288626.
  10. Anokwuru, E. A., & Emmanuel, I. (2025). AI-Driven Field Enablement Systems for Oncology Commercial Strategy. International Journal of Scientific Research and Modern Technology, 4(2), 118–135. https://doi.org/10.38124/ijsrmt.v4i2.1011
  11. Anokwuru, E. A., Omachi, A., & Enyejo, L. A. (2022). Human-AI Collaboration in Pharmaceutical Strategy Formulation: Evaluating the Role of Cognitive Augmentation in Commercial Decision Systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(2), 661–678. https://doi.org/10.32628/CSEIT2541333
  12. Anyika, E. N. (2016). Regulatory uncertainties in the pharmaceutical sector: perceptions among Nigerian pharmacists and policy implications for decision making. J Hosp Adm5(3), 48-55.
  13. Arora, P., Boyne, D., Slater, J. J., Gupta, A., Brenner, D. R., & Druzdzel, M. J. (2019). Bayesian networks for risk prediction using real-world data: a tool for precision medicine. Value in Health22(4), 439-445.
  14. Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy. IRE Journals, 2(12).
  15. Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496
  16. Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
  17. Atalor, S. I. (2022). Blockchain-Enabled Pharmacovigilance Infrastructure for National Cancer Registries. International Journal of Scientific Research and Modern Technology, 1(1), 50–64. https://doi.org/10.38124/ijsrmt.v1i1.493
  18. Cockburn, I. M., & Henderson, R. (2018). The evolution of scale and scope in the pharmaceutical industry. Journal of Industrial Economics, 66(1), 23–53.
  19. Cole, A., Neri, M., & Cookson, G. (2023). Payment models for multi-indication therapies. Online.(Accessed July 2022).
  20. DiMasi, J. A., Grabowski, H., & Hansen, R. (2020). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 75, 102–124.
    Munos, B., & Orloff, J. (2022). The strategic complexities of pharmaceutical R&D portfolios. Nature Reviews Drug Discovery, 21(5), 323–340.
  21. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains. International Journal of Innovative Science and Research Technology, 9(11). https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  22. Frimpong, G., Peter-Anyebe, A. C., & Ijiga, O. M. (2023). Artificial Intelligence Driven Compliance Automation in Healthcare Revenue Systems. Global Journal of Engineering, Science & Social Science Studies, 9(9).
  23. Gansch, R., Putze, L., Koopmann, T., Reich, J., & Neurohr, C. (2025). Causal Bayesian Networks for Data-Driven Safety Analysis of Complex Systems. In International Symposium on Model-Based Safety and Assessment (pp. 222-237). Cham: Springer Nature Switzerland.
  24. Gupta, K., & Wang, Y. (2023). Redefining Efficiency: Computational Methods for Financial Models in Python. Available at SSRN 4588625.
  25. Idika, C. N. (2023). Quantum Resistant Cryptographic Protocols for Securing Autonomous Vehicle Networks. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(1). https://doi.org/10.32628/CSEIT2391547
  26. Idika, C. N., James, U. U., Ijiga, O. M., Okika, N., & Enyejo, L. A. (2024). Secure Routing Algorithms for UAV Disaster Response. International Journal of Scientific Research and Modern Technology, 3(6). https://doi.org/10.38124/ijsrmt.v3i6.635
  27. Idika, C. N., Salami, E. O., Ijiga, O. M., & Enyejo, L. A. (2021). Deep Learning Driven Malware Classification for Cloud-Native Microservices. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7(4). https://doi.org/10.32628/IJSRCSEIT
  28. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the Voices of AI: Generative Music Models and Voice Cloning.
  29. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Quantum AI: Implications and Applications. Global Journal of Engineering and Technology Advances, 18(3).
  30. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the Potential of Elon Musk’s Proposed Quantum AI. Global Journal of Engineering and Technology Advances, 18(3), 48–65.
  31. Igba, E., Ihimoyan, M. K., Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(6), 1620–1645. https://doi.org/10.32628/CSEIT241061214
  32. Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I., & Daniel, D. O. (2024). Integrating Community-Based Partnerships for Enhanced Health Outcomes. Open Access Research Journal of Biology and Pharmacy, 10(2), 81–104.
  33. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I., & Enyejo, L. A. (2024). Precision Healthcare Analytics. World Journal of Biology Pharmacy and Health Sciences, 18(1), 336–354.
  34. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced Surveillance and Detection Systems Using Deep Learning to Combat Human Trafficking. Magna Scientia Advanced Research and Reviews, 11(1), 267–286.
    Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and Cross-Cultural Education. IRE Journals, 5(1).
  35. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital Storytelling as a Tool for Enhancing STEM Engagement. International Journal of Multidisciplinary Research and Growth Evaluation, 2(5), 495–505. https://doi.org/10.54660/IJMRGE.2021.2.5.495-505
  36. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-Powered E-Learning Platforms for STEM Education: Evaluating Effectiveness in Low Bandwidth Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(5), 455–475. https://doi.org/10.32628/IJSRCSEIT
  37. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-Driven Public Health Literacy: Using Data Visualization and Analytics. International Journal of Scientific Research in Science and Technology, 10(4), 773–793. https://doi.org/10.32628/IJSRST
  38. Ilesanmi, M. O., Bamigwojo, O. V., Jinadu, S. O., Oyekan, M., & Ijiga, O. M. (2023). Mitigating Regulatory and Market Risks in U.S. Renewable Energy Portfolios: A Portfolio Asset Manager’s Perspective. International Journal of Scientific Research in Science and Technology, 10(6), 878–906. https://doi.org/10.32628/IJSRST5231103
  39. Iskar, M., Zeller, G., Zhao, X. M., van Noort, V., & Bork, P. (2012). Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Current opinion in biotechnology23(4), 609-616.
  40. James, U. U., Idika, C. N., Enyejo, L. A., Abiodun, K., & Enyejo, J. O. (2024). Adversarial Attack Detection Using Explainable AI in Financial Fraud Systems. International Journal of Scientific Research and Modern Technology, 3(12), 142–157. https://doi.org/10.38124/ijsrmt.v3i12.644
  41. Jinadu, S. O., Akinleye, E. A., Onwusi, C. N., Raphael, F. O., Ijiga, O. M., & Enyejo, L. A. (2023). Engineering Atmospheric CO₂ Utilization Strategies. Engineering Science & Technology Journal, 4(6), 741–760.
  42. Jinadu, S. O., Akinleye, K. E., & Ijiga, O. M. (2024). Deployment of Geological CO₂ Sequestration with Proprietary Injection Techniques for Oil Yield Optimization and Energy Independence. International Journal of Scientific Research in Science, Engineering and Technology, 11(6). https://doi.org/10.32628/IJSRSET2512162
  43. Kesireddy, S. (2025). AI-Augmented Cloud Data Engineering: Transforming Analytics in Regulated Industries. Journal of Computer Science and Technology Studies7(6), 113-122.
  44. Kitson, N. K., Constantinou, A. C., Guo, Z., Liu, Y., & Chobtham, K. (2023). A survey of Bayesian Network structure learning. Artificial Intelligence Review56(8), 8721-8814.
  45. Kola, I., & Landis, J. (2023). Evaluating R&D productivity across therapy areas. Nature Reviews Drug Discovery, 22(3), 185–200.
  46. Lawler, M., Keeling, P., Kholmanskikh, O., Minnaard, W., Moehlig-Zuttermeister, H., Normanno, N., & Verweij, J. (2024). Empowering effective biomarker-driven precision oncology: A call to action. European Journal of Cancer209, 114225.
  47. Lee, G., Kim, W., Oh, H., Youn, B. D., & Kim, N. H. (2019). Review of statistical model calibration and validation—from the perspective of uncertainty structures. Structural and Multidisciplinary Optimization60(4), 1619-1644.
  48. Leising, J. M., & Goldman, O. C. (2021). Portfolio Modeling and Forecasting of Single-Use Rare Disease Treatments.
  49. Li, Y., Liu, Y., Wang, S., & Han, Y. (2025). Stress-Testing the Functionality of Healthcare Infrastructure Systems: Percolation Analysis on Network Flows. Journal of Management in Engineering41(4), 04025026.
  50. Lyng, H. B., Macrae, C., Guise, V., Haraldseid-Driftland, C., Fagerdal, B., Schibevaag, L., & Wiig, S. (2021). Balancing adaptation and innovation for resilience in healthcare–a metasynthesis of narratives. BMC health services research21(1), 759.
  51. Madhuranthakam, R. S. (2025). Scalable Data Engineering Pipelines for Real-Time Analytics in Big Data Environments. Available at SSRN 5239957.
  52. Majka, M. (2024). Monte Carlo Simulation in Financial Modelling. Researchgate. September30, 2024.
  53. Mathews, D. J., Balatbat, C. A., & Dzau, V. J. (2022). Governance of emerging technologies in health and medicine—creating a new framework. N Engl J Med386(23), 2239-2242.
  54. Nicora, G., Rios, M., Abu-Hanna, A., & Bellazzi, R. (2022). Evaluating pointwise reliability of machine learning prediction. Journal of Biomedical Informatics127, 103996.
  55. Ocharo, D. O., Omachi, A., Aikins, S. A., & Adaudu, I. I. (2024). SCADA-Enabled Predictive Maintenance Framework for Cogeneration Systems in American Manufacturing Facilities. International Journal of Scientific Research and Modern Technology, 3(7), 30–44. https://doi.org/10.38124/ijsrmt.v3i7.947
  56. Ogbuonyalu, U. O., Abiodun, K., Dzamefe, S., Vera, E. N., Oyinlola, A., & Igba, E. (2024). AI-Driven Algorithmic Trading and Market Liquidity Risk. International Journal of Scientific Research and Modern Technology, 3(4), 18–21.
  57. Ogunlana, Y. S., & Omachi, A. (2024). Countering Political Misinformation in the U.S. Through Instructional Media Literacy. International Journal of Scientific Research in Humanities and Social Sciences. https://doi.org/10.32628/IJSRSSH
  58. Ogunlana, Y. S., & Peter-Anyebe, A. C. (2024). Policy by Design: Inclusive Instructional Models for Advancing Neurodiversity Equity in Public Programs. International Journal of Scientific Research in Humanities and Social Sciences, 1(1), 243–261. https://doi.org/10.32628/IJSRSSH
  59. Olivier-Maget, N., De Barnier, T., Bourgeois, F., & Gabas, N. (2025). Uncertainty Quantification in Industrial Risk Assessment for Practical Decision-making. Chemical Engineering Transactions116, 469-474.
  60. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Using Encrypted CRM Analytics and Adaptive PWA Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562
  61. Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms Using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561
  62. Onyekaonwu, C. B., Peter-Anyebe, A. C., & Raphael, F. O. (2019). From Prescription to Prediction: Leveraging AI/ML to Improve Medication Adherence. International Journal of Scientific Research in Science and Technology, 6(5), 460–476. https://doi.org/10.32628/IJSRST
  63. Oyekan, M., Igba, E., & Jinadu, S. O. (2024). Building Resilient Renewable Infrastructure in an Era of Climate and Market Volatility. International Journal of Scientific Research in Humanities and Social Sciences, 1(1). https://doi.org/10.32628/IJSRSSH243563
  64. Oyekan, M., Jinadu, S. O., & Enyejo, J. O. (2023). Harnessing Data Analytics to Maximize Renewable Energy Asset Performance. International Journal of Scientific Research and Modern Technology, 2(8), 64–80. https://doi.org/10.38124/ijsrmt.v2i8.850
  65. Pearl, J., & Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic books.
  66. Phillips, P. J., Phillips, P. J., Hahn, C. A., Fontana, P. C., Yates, A. N., Greene, K., ... & Przybocki, M. A. (2021). Four principles of explainable artificial intelligence.
  67. Pouya, P., & Madni, A. M. (2022). Probabilistic system modeling for complex systems operating in uncertain environments. In Recent Trends and Advances in Model Based Systems Engineering (pp. 113-127). Cham: Springer International Publishing.
  68. Rajaratnam, B., Sparks, D., Khare, K., & Zhang, L. (2019). Uncertainty quantification for modern high-dimensional regression via scalable Bayesian methods. Journal of Computational and Graphical Statistics28(1), 174-184.
  69. Schneider, M., & Denicolò, V. (2020). Regulation and innovation cycles in pharmaceuticals. Journal of Economic Behavior & Organization, 179, 855–874.
  70. Smith, O. (2025). Cultural Contexts in English Language Teaching: Balancing Global Standards with Local Relevance. IOSR Journal of Humanities and Social Science (IOSR-JHSS) Volume 30, Issue 10, Series 2 16-28.
  71. Smith, O. (2025). El Inglés como Mejora para la Carrera Profesional y Empresarial Local e Internacional. Ciencia Latina Revista Científica Multidisciplinar, 9(5), 5038-5056. https://doi.org/10.37811/cl_rcm.v9i5.19839
  72. Smith, O. (2025). English Education and Global Citizenship: Preparing Learners for a Multilingual, Interconnected World IOSR Journal of Humanities and Social Science (IOSR-JHSS) Volume 30, Issue 10,  08-15.
  73. Ukpe, I. E., Atala, O. & Smith, O. (2023). Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World, Vol. 9 Issue 4. Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World | Communication In Physical Sciences
  74. Upadhyay, A. K., & Bhandari, A. K. (2024). Advances in deep learning models for resolving medical image segmentation data scarcity problem: a topical review. Archives of Computational Methods in Engineering31(3), 1701-1719.
  75. Vogler, S., Paris, V., Ferrario, A., Wirtz, V. J., de Joncheere, K., Schneider, P., ... & Babar, Z. U. D. (2017). How can pricing and reimbursement policies improve affordable access to medicines? Lessons learned from European countries. Applied health economics and health policy15(3), 307-321.

Pharmaceutical enterprises operating across multiple therapeutic areas face increasingly complex risk environments driven by evolving regulatory policies, global market volatility, and shifting R&D productivity dynamics. This review presents a comprehensive examination of predictive modeling frameworks designed to enhance portfolio risk assessment for multi-therapeutic organizations, with emphasis on oncology, cardiovascular, and vaccine development pipelines. The paper evaluates the application of Python-based Monte Carlo simulations for probabilistic forecasting of clinical success rates, cost overruns, regulatory delays, and market adoption uncertainties. Additionally, Bayesian network models are analyzed as tools for representing causal dependencies among scientific, operational, and macroeconomic variables that influence therapeutic portfolio performance. The integration of these quantitative methods provides a robust foundation for stress-testing strategic investment decisions, optimizing resource allocation, and supporting evidence-based governance under varying policy scenarios. By synthesizing current methodologies, case applications, and computational best practices, this review highlights emerging opportunities for data-driven risk intelligence in pharmaceutical portfolio management. The findings underscore the need for adaptive, transparent, and scalable analytical systems capable of guiding long-term enterprise decision-making amidst global health and economic disruptions.

Keywords : Portfolio Risk Assessment; Monte Carlo Simulation; Bayesian Networks; Multi-Therapeutic Pharmaceuticals; Predictive Modeling.

CALL FOR PAPERS


Paper Submission Last Date
31 - January - 2026

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe