Production of Hydrogen from Biomass using Pyrolysis


Authors : Ezekiel Shilatu Gwatana; Solomon Olu

Volume/Issue : Volume 10 - 2025, Issue 7 - July


Google Scholar : https://tinyurl.com/3fep9ntv

Scribd : https://tinyurl.com/2jcac88e

DOI : https://doi.org/10.38124/ijisrt/25jul360

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : The pyrolysis of some selected biomass samples Palm Kernel Shell (PKS), Empty Fruit Bunch (EFB), Sugarcane Bagasse (SCB), Rubber Seed Shell and Kernel (RSSK), and Rubber Seed Shell (RSS), were carried out with the aim of producing Hydrogen using fast pyrolysis in a non iso-thermal pyrolysis temperature of 700°C, 800°C, with the other pyrolysis parameters to be kept constants at 100ml/min inert gas flowrate, 100°C/min heating rate. Both non catalytic and ex-situ catalytic pyrolysis using mesoporous Alumosilicate (Al-MCM-41) as catalyst under the same process parameters. It was observed that the hydrothermal instability structural collapse of Al-MCM-41 affected hydrogen yield at 800°C, but suitable at 700°C. The various biomass showed different variation in the proportion of hydrogen yield at different pyrolysis temperatures, strongly indicating hydrogen yield depends on the biomass elemental composition and pyrolysis temperature and among the few biomass samples experimented on SCB and EFB showed to be promising feedstock with their Hydrogen yield at all the process conditions remarkably above all other samples on the value of 47.17vol% for EFB at 800°C non catalytic pyrolysis, and 50.21vol% for SCB at 700°C catalytic pyrolysis.

Keywords : Pyrolysis, Al-MCM-41, Hydrogen, Biomass, RSSK, PKS, EFB, SCB, Syngas.

References :

  1. L.L. Ma, T.J. Wang, Q.Y. Liu, X.H. Zhang, W.C. Ma, Q. Zhang A review of thermal–chemical conversion of lignocellulosic biomass in China Biotechnol Adv, 30 (2012), pp. 859-873.
  2. MCM-41 (2023) Wikipedia. Available at: https://en.wikipedia.org/wiki/MCM-41 (Accessed: 03 July 2023).
  3. Yang Yang, Yuqing Zhang, Eman Omairey, Junmeng Cai, Fan Gu, Anthony V. Bridgwater, Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen, Journal of Cleaner Production, Volume 187, 2018, Pages 390-399, ISSN 0959-6526,
  4. Corma, M.S. Grande, V. Gonzalez-Alfaro, A.V. Orchilles, Cracking Activity, Hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY Zeolite, J. Catal. 159, 1996. 375
  5. E.F. Iliopoulou, E.V. Antonakou, S.A. Karakoulia, I.A. Vasalos, A.A. Lappas, K.S. Triantafyllidis. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts, Chemical Engineering Journal, Volume 134, Issues 1–3, 2007, Pages 51-57, ISSN 1385-8947.
  6. Sayari, Abdelhamid (1996). "Catalysis by Crystalline Mesoporous Molecular Sieves". Chemistry of Materials8 (8): 1840–1852. doi:10.1021/cm 950 585+.
  7. Donald S. ScottJan Piskorz. The continuous flash pyrolysis of biomass. June 1984. The Canadian Journal of Chemical Engineering Volume 62, Issue 3 p. 404-412.
  8. Hydrogen Production Processes (no date) Energy.gov. Available at: https://www.energy.gov/eere/fuelcells/ hydrogen-production-processes (Accessed: 08 July 2023).
  9. Lopez, G., Santamaria, L., Lemonidou, A. et al. Hydrogen generation from biomass by pyrolysis. Nat Rev Methods Primers 2, 20 (2022). https://doi.org/10.1038/s43586-022-00097-8.
  10. Kumar, G., Eswari, A.P., Kavitha, S. et al. Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Conv. Bioref. 13, 8509–8534 (2023). https://doi.org/10.1007/s13399-020-01127-9
  11. Cai J, Wang G (2013) Bioreactor for fermentative hydrogen production: a review. Environ Sci Technol 36:78–84
  12. Iberdrola (2021) Green hydrogen: An alternative that reduces emissions and cares for our planet, Iberdrola. Available at: https://www.iberdrola.com/sustainab ility/green-hydrogen (Accessed: 16 July 2023).
  13. Parthasarathy, P., Alherbawi, M., Shahbaz, M. et al. Conversion of oil palm waste into value-added products through pyrolysis: a sensitivity and techno-economic investigation. Biomass Conv. Bioref. (2022) . https://doi.org/10.1007/s13399-022-03144-2.
  14. S.N.A.M. Hassan, M.A.M. Ishak, K. Ismail, S.N. Ali, M.F. Yusop, Comparison Study of Rubber Seed Shell and Kernel (Hevea Brasiliensis) as Raw Material for Bio-oil Production, Energy Procedia, Volume 52, 2014, Pages 610-617, ISSN 1876-6102,
  15. Boer, F. D., Valette, J., Commandré, J., Fournier, M., Thévenon, M. (2021). Slow Pyrolysis of Sugarcane Bagasse for the Production of Char and the Potential of Its By-Product for Wood Protection. Journal of Renewable Materials, 9(1), 97–117.
  16. L.F.B. Chin, Yusup Suzana, A. AI Shoaibi, Shaharin Anwar Sulaiman. (2014). Thermal Degradation Behaviour for Co-gasification of Rubber Seed Shell and High Density Polyethylene Mixtures using Thermogravimetric Analysis. November 2014, Journal of Applied Sciences 14(11):1225-1229. DOI:10.3923/jas.2014.1225.1229.
  17. Colomba Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, Volume 34, Issue 1, 2008, Pages 47-90, ISSN 0360-1285,
  18. Dinesh Mohan, Charles U. Pittman Jr., and Philip H. Steele. Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review Energy & Fuels 2006 20 (3), 848-889DOI: 10.1021/ef0502397
  19. Demirbas (2007) Effect of Temperature on Pyrolysis Products from Biomass, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29:4, 329-336, DOI: 10.1080/009083190965794.
  20. Yang, Y., ópez Ordovás, J., Chong, K., and Bridgwater, T. (2019). Industrial technologies for slow pyrolysis. In J. Manya (Ed.), Advanced Carbon Materials from Biomass: An Overview (pp. 33-44).
  21. Jiacheng Sun, Omid Norouzi, Ondřej Mašek, A state-of-the-art review on algae pyrolysis for bioenergy and biochar production, Bioresource Technology, Volume 346, 2022, 126258, ISSN 0960-8524,
  22. Kebelmann, Katharina & Hornung, Andreas & Karsten, Ulf & Griffiths, Gareth. (2013). Thermo-chemical behaviour and chemical product formation from Polar seaweeds during intermediate pyrolysis. Journal of Analytical and Applied Pyrolysis. 104. 131-138. 10.1016/j.jaap.2013.08.012.
  23. Manoj Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review, Renewable and Sustainable Energy Reviews, Volume 55, 2016, Pages 467-481, ISSN 1364-0321,
  24. Corma, M.S. Grande, V. Gonzalez-Alfaro, A.V. Orchilles, Cracking Activity, Hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY Zeolite, J. Catal. 159 (1996) 375.
  25. B.M Jenkins, L.L Baxter, T.R Miles, T.R Miles, Combustion properties of biomass, Fuel Processing Technology, Volume 54, Issues 1–3, 1998, Pages 17-46, ISSN 0378-3820,
  26. Haiping Yang, Rong Yan, Hanping Chen, Chuguang Zheng, Dong Ho Lee, and David Tee Liang. (2006). In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components:  Hemicellulose, Cellulose and Lignin. Energy & Fuels 2006 20 (1), 388-393. DOI: 10.1021/ef0580117
  27. Ekebafe, Lawrence. Linda, Igbonazobi. Anakhu, A.E. (2020) Advances in natural rubber seed shell utilization in polymer technology. Vol-3, 10.37121/jase.v3i2.87. Journal of Advances in Science and Engineering.
  28. I.P., Mahendra, B., Wirjosentono, Tamrin,, H., Ismail and J.A., Mendez. "Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB)" Open Chemistry, vol. 17, no. 1, 2019, pp. 526-536. https://doi.org/10.1515/chem-2019-0063.
  29. H. Hajiha, M. Sain. (2015). The use of sugarcane bagasse fibres as reinforcements in composites. Editor(s): Omar Faruk, Mohini Sain. Biofiber Reinforcements in Composite Materials, Woodhead Publishing, 2015, Pages 525-549,ISBN 9781782 421221.
  30. Musa, Mazlina. Mydin, Azree. Ghani, Abdul Naser Abdul. (2018). Optimization of mechanical properties in foamcrete reinforced with raw oil palm empty fruit bunch (EFB) fiber. Vol-250. 10.1051/matecconf/201825005004. MATEC Web of Conferences.
  31. Mark M. Wright, Daren E. Daugaard, Justinus A. Satrio, Robert C. Brown, Techno-economic analysis of biomass fast pyrolysis to transportation fuels, Fuel, Volume 89, Supplement 1, 2010, Pages S2-S10, ISSN 0016-2361.
  32. Xiaoquan Wang, Sascha R. A. Kersten, Wolter Prins, and Wim P. M. van Swaaij. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2:  Experimental Validation of Model Results Industrial & Engineering Chemistry Research 2005 44 (23), 8786-8795. DOI: 10.1021/ie050486y.
  33. Ersan Pütün, Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst, Energy, Volume 35, Issue 7, 2010, Pages 2761-2766, ISSN 0360-5442,
  34. M. Nik-azar, M.R. Hajaligol, M. Sohrabi & B. Dabir (1996) effects of heating rate and particle size on the products yields from rapid pyrolysis of beech-wood, fuel science and technology international, 14:4, 479-502, doi: 10.1080/08843759608947593.
  35. C. Valenzuela-Calahorro, A. Bernalte-Garcia, V. Gómez-Serrano, M.J. Bernalte-García. Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood, Journal of Analytical and Applied Pyrolysis, Volume 12, Issue 1, 1987, Pages 61-70, ISSN 0165-2370.
  36. S Şensöz, D Angın, S Yorgun. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil, Biomass and Bioenergy, Volume 19, Issue 4, 2000, Pages 271-279, ISSN 0961-9534,
  37. Michael L. Boroson, Jack B. Howard, John P. Longwell, and William A. Peters. Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces. Energy & Fuels 1989 3 (6), 735-740. DOI: 10.1021/ef00018a014.
  38. Haiping Yang, Rong Yan, Hanping Chen, Dong Ho Lee, Chuguang Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, Volume 86, Issues 12–13, 2007, Pages 1781-1788, ISSN 0016-2361.
  39. R. Zanzi, X. Bai, P. Capdevila and E. Bjornbom, 6th World Congress of Chemical Engineering, Melbourne, Australia, 2001.
  40. Chihiro Fushimi, Kenichi Araki, Yohsuke Yamaguchi, and Atsushi Tsutsumi. Effect of Heating Rate on Steam Gasification of Biomass. 2. Thermogravimetric-Mass Spectrometric (TG-MS) Analysis of Gas Evolution. Industrial & Engineering Chemistry Research 2003 42 (17), 3929-3936. DOI: 10.1021/ie0300575.
  41. Kyle Thomas Eadie. Hydrogen Production Via Biomass Pyrolysis, B41FC final report, 2023.
  42. Su Shiung Lam, Alan D. Russell, Chern Leing Lee, Howard A. Chase, Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil, Fuel, Volume 92, Issue 1, 2012, Pages 327-339, ISSN 0016-2361.
  43. Su Shiung Lam, Alan D. Russell, Howard A. Chase, Microwave pyrolysis, a novel process for recycling waste automotive engine oil, Energy, Volume 35, Issue 7, 2010, Pages 2985-2991, ISSN 0360-5442,
  44. AY¸E EREN PÜTÜN, NURGÜL ÖZBAY, ÖMER METE KOÇKAR & ERSAN PÜTÜN (1997) Fixed-Bed Pyrolysis of Cottonseed Cake: Product Yields and Compositions, Energy Sources, 19:9, 905-915, DOI: 10.1080/00908319708908900
  45. Tingting Qu, Wanjun Guo, Laihong Shen, Jun Xiao, and Kun Zhao. Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin TIndustrial & Engineering Chemistry Research 2011 50 (18), 10424-10433, DOI: 10.1021/ie1025453.
  46. C. Bamford, J. Crank and D. Malan, Proceedings of the Cambridge Phil. Soc, 1946
  47. Md. Nasir Uddin, W. M. A. Wan Daud, and Hazzim F. Abbas Effects of pyrolysis parameters on hydrogen formations from biomass: a review DOI: 10.103 9/C3RA43972K (Review Article) RSC Adv., 2014, 4, 10467-10490.
  48. S. Panigrahi, A. K. Dalai, S. T. Chaudhari, and N. N. Bakhshi. Synthesis Gas Production from Steam Gasification of Biomass-Derived Oil, Energy & Fuels 2003 17 (3), 637-642, DOI: 10.1021/ef020073z.
  49. M. S. Mettler, D. G. Vlachos and P. J. Dauenhauer, Energy Environ. Sci., 2012, 5, 7797–7809.
  50. J.A. Caballero, J.A. Conesa, R. Font, A. Marcilla, Pyrolysis kinetics of almond shells and olive stones considering their organic fractions, Journal of Analytical and Applied Pyrolysis, Volume 42, Issue 2, 1997, Pages 159-175, ISSN 0165-2370.
  51. D.M. Alonso, S.G. Wettstein, J.A. Dumesic. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. (2012), p. 41.
  52. Vaibhav Dhyani, Thallada Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, Volume 129, Part B,2018, Pages 695-716, ISSN 0960-1481.

The pyrolysis of some selected biomass samples Palm Kernel Shell (PKS), Empty Fruit Bunch (EFB), Sugarcane Bagasse (SCB), Rubber Seed Shell and Kernel (RSSK), and Rubber Seed Shell (RSS), were carried out with the aim of producing Hydrogen using fast pyrolysis in a non iso-thermal pyrolysis temperature of 700°C, 800°C, with the other pyrolysis parameters to be kept constants at 100ml/min inert gas flowrate, 100°C/min heating rate. Both non catalytic and ex-situ catalytic pyrolysis using mesoporous Alumosilicate (Al-MCM-41) as catalyst under the same process parameters. It was observed that the hydrothermal instability structural collapse of Al-MCM-41 affected hydrogen yield at 800°C, but suitable at 700°C. The various biomass showed different variation in the proportion of hydrogen yield at different pyrolysis temperatures, strongly indicating hydrogen yield depends on the biomass elemental composition and pyrolysis temperature and among the few biomass samples experimented on SCB and EFB showed to be promising feedstock with their Hydrogen yield at all the process conditions remarkably above all other samples on the value of 47.17vol% for EFB at 800°C non catalytic pyrolysis, and 50.21vol% for SCB at 700°C catalytic pyrolysis.

Keywords : Pyrolysis, Al-MCM-41, Hydrogen, Biomass, RSSK, PKS, EFB, SCB, Syngas.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe