Reactive Fire-Retardant Nanocoatings for Steel Structures


Authors : Ramil Vakhitov; Nadiya Taran; Varvara Drizhd; Kostyantyn Kalafat; Mykola Korotkikh; Liubov Vakhitova

Volume/Issue : Volume 10 - 2025, Issue 6 - June


Google Scholar : https://tinyurl.com/bdepfr3v

DOI : https://doi.org/10.38124/ijisrt/25jun234

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Modern construction is characterized by an increasing use of steel structural members. This is due to their strength, durability, and their capability to ensure rapid structure assembly. One of the key requirements for such structures is ensuring an adequate level of fire safety, which is achieved through the application of reactive coatings. The most effective means in this regard are intumescent coatings, which form a thermal insulation layer at high temperatures. Such a layer preserves the load-bearing capacity of structures through thermal insulation. Recently, significant attention has been given to improving the properties of intumescent systems and enhancing their fire-retardant efficiency. A promising direction is the use of nanotechnology, which enables the creation of environmentally friendly, fire-resistant, and durable fire-retardant coatings. Fire-retardant coatings that contain nanomaterials are called nanocoatings. Among the most common and multifunctional nanofillers used in reactive coatings are layered nanoclays, LDH compounds, nanostructured carbon forms, silicon and metal nano-oxides. Nanomaterials play a key role in enhancing the fire-retardant properties of intumescent systems by participating in both chemical and physical fire protection mechanisms. An interesting research direction is the development of environmentally safe nanofillers, particularly the bio-based ones, which opens up opportunities for creating new materials with improved performance characteristics. Given these factors, nanomaterials continue to be a promising direction for the advancement of fire-retardant coatings.

Keywords : Fire-Retardant Nanocoatings, Intumescent Coating, Nanomaterials, Layered Nanosilicates, LDH, Nanostructured Carbon, Nano Silica Oxide.

References :

  1. Lucherini A, Maluk C. Intumescent coatings used for the fire-safe design of steel structures: A review. J. Constr. Steel Res. 2019; 162:105712. doi.org/10.1016/j.jcsr.2019.105712
  2. Jochen AHD, Weinell CE, Dam-Johansen K, Kiil S. Review of heat exposure equipment and in-situ characterisation techniques for intumescent coatings. Fire Saf J. 2021; 121:103264. doi.org/10.1016/j.firesaf.2020.103264
  3. Geoffroy L, Samyn F, Jimenez M, Bourbigot S. An efficient bi-layer intumescent paint metal laminate fire barrier for various substrates: Extension to other application. Eur J Mater. 2021; 1(1): 19–33. doi.org/10.1080/26889277.2021.1972770
  4. Kalafat K, Vakhitova L. Fire protection solutions for steel construction: a monograph. Kyiv: Ukrainian Centre For Steel Construction, 2023; 372 p. [cited 2025 Jan 15] Available from: https://www.uscc.ua/ uploads/page/images/publications/ognezaschita/uscc_fireproofing_catalog_2023.pdf
  5. de Silva D, Nuzzo I, Nigro E, Occhiuzzi A. Intumescent coatings for fire resistance of steel structures: current approaches for qualification and design. Coatings. 2022; 2(5): 696. doi:10.3390/coatings12050696
  6. Zehfuß J, Sander L. Gypsum plasterboards under natural fire – Experimental investigations of thermal properties. Civ Eng Des. 2021; 3(3): 62–72. doi:10.1002/cend.202100002
  7. Vakhitova L, Kalafat K, Vakhitov R, Drizhd V. Improving the fire-retardant performance of industrial reactive coatings for steel building structures. Heliyon. 2024; 10(14):e34729. doi.org/10.1016/j.heliyon.2024.e34729
  8. Liblik J, Küppers J, Maaten B, Just A. Fire protection provided by clay and lime plasters. Wood Mater Sci Eng. 2020; 1714726. doi:10.1080/17480272.2020.1714726
  9. Abidi S, Nait-Ali B, Joliff Y, Favotto C. Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: Experimental and numerical approaches. Compos B Eng. 2015; 68:392-400. doi.org/10.1016/j.compositesb.2014.07.030.
  10. Novel fire retardant polymers and composite materials. Ed.by Wang D.-Y. Elsevier. 2017. 328 р. doi.org/10.1016/C2014-0-01717-0
  11. Mariappan T. Recent developments of intumescent fire protection coatings for structural steel: A review. J Fire Sci. 2016; 34:120–63. doi.org/10.1177/0734904115626720
  12. Yasir M, Ahmad F, Yusoff PSMM, Ullah S, Jimenez M. Latest trends for structural steel protection byusing intumescent fire protective coatings: a review. Surf Eng. 2019; 36(4):334–63. doi:10.1080/02670844. 2019.1636536
  13. Puri RG, Khanna AS. Intumescent coatings: A review on recent progress. J Coat Technol Res. 2017; 14:1–20. doi:10.1007/s11998-016-9815-3
  14. Vakhitova LN. Fire retardant nanocoating for wood protection. In: Nanotechnology in Eco-efficient Construction. 2019; 361–91. doi.org/10.1016/B978-0-08-102641-0.00016-5
  15. Anees SM, Dasari A. A review on the environmental durability of intumescent coatings for steels. J Mater Sci. 2018; 53:124–45. doi.org/10.1007/s10853-017-1500-0
  16. Zhao WJ, Kundu CK, Li ZW, Li XH, Zhang ZJ. Flame retardant treatments for polypropylene: Strategies and recent advances. Compos. Part A. Appl Sci Manuf. 2021; 145:106382. doi.org/10.1016/j.compositesa. 2021.106382
  17. Xu B, Shao LS, Wang JY, Liu YT, Qian LJ. Enhancement of the intumescent flame retardant efficiency in polypropylene by synergistic charring effect of a hypophosphite/cyclotetrasiloxane bi-group compound. Polym Degrad Stab. 2020; 181:109281. doi.org/10.1016/j.polymdegradstab.2020.109281
  18. Vandersall HL. Intumescent coating systems, their development and chemistry. J Fire Flammabil.1971; 2:97–140.
  19. Kay M, Price AF, Lavery I. Review of intumescent materials, with emphasis on melamine. formulations. J Fire Retard Chem. 1979; 6:69–91.
  20. Beh JH, Yew MC; Saw LH, Yew MK. Fire resistance and mechanical properties of intumescent coating using novel bioash for steel. Coatings. 2020; 10:1117. doi.org/10.3390/coatings10111117
  21. Zielecka M, Rabajczyk A, Cyganczuk K, Pastuszka L, Jurecki L. Silicone resin-based intumescent paints. Mater. 2020; 13(21):4785. doi.org/10.3390/ma13214785
  22. Levinṭa N, Vuluga Z, Teodorescu M, Corobea MC. Halogen-free flame retardants for application in thermoplastics based on condensation polymers. SN Appl Sci. 2019; 1:422. https://doi.org/10.1007/s42452-019-0431-6
  23. Wang L, Dong Y, Zhang D, Dang C. Experimental study of heat transfer in intumescent coatings exposed to non-standard furnace curves. Fire Technol. 2015; 51(1):627–43. doi:10.1007/s10694-015-0460-7
  24. Camino L, Martinasso CG. Intumescent fire-retardant systems. Polym Degrad Stab. 1989; 23:359-76.
  25. Kaur A, Kapoor K, Mandot A, Godara SK, Sood AK, Singh M. Fire-retardant coatings for modern lightweight materials. In Functional Coatings: Innovations and Challenges. Eds.: Davim JP, Arya RK, Verros GD. Wiley: Hoboken, New Jersey, USA. 2024; 202–30. ISBN 9781394207305.
  26. Jimenez M, Duquesne S, Bourbigot S. Multiscale experimental approach for developing high-performance intumescent coatings. Ind Eng Chem Res. 2006; 45: (13):4500–08. doi: 10.1021/ie060040x
  27. Kalafat KV, Taran NA, Plavan VP, Redko AM, Efimova IV, Vakhitova LM. The effect of ammonium polyphosphate:melamine:pentaerythritol ratio on the efficiency of fire protection of reactive coatings. Vopr Khim Khim Tekhnol. 2020; 6:59–68. doi.org/10.32434/0321-4095-2020-133-6-59-68
  28. Bourbigot S, Sarazin J, Samyn F, Jimenez M. Intumescent ethylene-vinyl acetate copolymer: Reaction to fire and mechanistic aspects. Polym Degrad Stab. 2019; 161:235–44. doi:10.1016/j.polymdegradstab. 2019.01.029
  29. Pestereva L, Shakirov N, Shakirova O. Intumescent Type Fire Retardant Epoxy Coating. Mater Sci Forum. 2020; 992: 605–9. doi.org/10.4028/www.scientific.net/MSF.992.605
  30. Li Y, Cao CF, Chen ZY, Liu SC, Bae J, Tang LC. Waterborne Intumescent Fire-Retardant Polymer Composite Coatings: A Review. Polym. 2024; 16: 2353. doi.org/10.3390/polym16162353
  31. Bourbigot S, Sarazin J, Bensabath T, Samyn F, Jimenez M. Intumescent polypropylene: Reaction to fire and mechanistic aspects. Fire Saf J. 2019; 105: 261-9. doi.org/10.1016/j.firesaf.2019.03.007
  32. Gu J, Zhang G, Dong S, Zhang Q, Kong J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Technol. 2007; 201(18):7835–41. doi:10.1016/j.surfcoat .2007.03.02
  33. Gao M, Chen S, Wang H, Chai ZH. Design, preparation, and application of a novel, microencapsulated, intumescent, flame-retardant-Based mimicking mussel. ACS Omega. 2018; 3:6888–94. doi: 10.1021/acsomega.8b00364.
  34. Lazar ST, Kolibaba TJ, Grunlan JC. Flame-retardant surface treatments. Nat Rev Mater. 2020; 5: 259–75. doi.org/10.1038/s41578-019-0164-6
  35. Bourbigot S, LeBras M, Delobel R. Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate–pentaerythritol fire retardant system. Carbon.1993; 31 (8):1219–94. doi:10.1016/0008-6223(93)90079-P
  36. Li MX, Li X, Xu K, Qin A, Yan CT, Xu Y, et al. Construction and mechanism analysis of flame-retardant, energy-storage and transparent bio-based composites based on natural cellulose template. Int J Biol Macromol. 2024; 263:130317. doi.org/10.1016/j.ijbiomac.2024.
  37. Kandola BK, Williams KV, Ebdon JR. Organo-Inorganic hybrid intumescent fire retardant coatings for thermoplastics based on poly(vinylphosphonic acid). Molecules. 2020; 25(3): 688. doi.org/10.3390/molecules25030688
  38. Bourbigot S, Sarazin J, Bensabath T. Intumescent polypropylene in extreme fire conditions. Fire Saf J. 2021; 120:103082. doi.org/10.1016/j.firesaf.2020.103082
  39. Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: Toward a better understanding of their mechanism of action. Thermochim Acta. 2006; 449(1–2):16-26. doi.org/10.1016/j.tca.2006.07.008.
  40. Braun U, Schartel B, Fichera MA, Jäger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab. 2007; 92(8):1528–45. doi:10.1016/j.polymdegradstab.2007.05.007.
  41. Yew MC, Ramli Sulong H. Fire-resistive performance of intumescent flame-retardant coatings for steel. Mater Des. 2012; 34:719–24. doi:10.1016/j.matdes.2011.05.032
  42. Eremina T, Korolchenko D. Fire protection of building constructions with the use of fire-retardant intumescent compositions. Buildings. 2020; 10:185. doi.org/10.3390/buildings10100185
  43. Hansupo N, Tricot G, Bellayer S, et al. Getting a better insight into the chemistry of decomposition of complex flame retarded formulation: New insights using solid state NMR. Polym Degrad Stab. 2018;153. doi:10.1016/j.polymdegradstab.2018.04.028
  44. Sunder S, Rozo MJ, Inasu S, Meinel D, Schartel B, Ruckdäschel H. Effect of ammonium polyphosphate/silicate content on thepostfire mechanics of epoxy glass-fiber composites usingfacile chocolate bar-inspired structures. Fire Mater. 2025; 1:1–18. https://doi.org/10.1002/fam.3280
  45. Amir N, Ahmad F, Halim M, et al. Synergistic effects of titanium dioxide and zinc borate on thermal degradation and water resistance of epoxy based intumescent fire retardant coatings. Key Eng Mater. 2017; 740:41–7. doi:10.4028/www.scientific.net/KEM.740.41
  46. Zoleta J, Itao G, Resabal VJ, Lubguban AA, Corpuz R, Tabelin CB, et al. CeO2-dolomite as fire retardant additives on the conventional intumescent coating in steel substrate for improved performance. In: MATEC Web of Conferences. 2019; 2:04009.  doi:10.1051/matecconf/201926804009
  47. Guzii S, Kurska T, Otrosh Y, Balduk P, Ivanov Y. Features of the organic-mineral intumescent paints structure formation for wooden constructions fire protection. IOP Conference Series. Mater Sci Eng. Bristol. 2021; 1162 (1):012003. License CC BY 3.0. doi:10.1088/1757-899X/1162/1/012003
  48. Kandola BK, Magnoni F, Ebdon JR. Flame retardants for epoxy resins: Application-related challenges and solutions. J Vinil Addit Technol. 2022; 28:17–49. doi.org/10.1002/vnl.21890
  49. Zhong Y, Wu W, Wu R, Luo Q, Wang Z. The flame retarding mechanism of the novolac as char agent with the fire retardant containing phosphorous-nitrogen in thermoplastic poly(ester ether) elastomer system. Polym Degrad Stab. 2014; 105:166–77. doi:10.1016/j.polymdegradstab. 2014.04.013
  50. Olivera RBRS, Moreno ALJ, Vieira LCM. Intumescent paint as fire protection coating. Struct Mater J. 2017; 10(1):220–31. doi:10.1590/s1983-41952017000100010
  51. Zhang Y, Wang Y, Bailey CG, Taylor AP. Global modelling of fire protection performances of an intumescent coating under different furnace fire conditions. J Fire Sci. 2012; 31(1):51–72. doi:10.1177/0734904112453566
  52. Griffin GJ, Bicknell AD, Brown TJ. Studies on the effect of atmospheric oxygen content on the thermal resistance of intumescent fire-retardant coatings. J Fire Sci. 2005; 23(4):1-5. doi.org/10.1177/0734904105048598
  53. Anna P, Marosi G, Bourbigot S, Le Bras M, Delobel R. Intumescent flame retardant systems of modified rheology. Polym Degrad Stab. 2002; 77:243–7. doi:10.1016/S0141-3910(02)00040-X
  54. Vakhitova L, Kalafat K, Vakhitov R, Drizhd V, Taran N, Bessarabov V. Nano-clays as rheology modifiers in intumescent coatings for steel building structures. Chemical Engineering Journal Advances. 2023; 16: 100544. doi.org/10.1016/j.ceja.2023.100544
  55. Kaur J, Ahmad F, Ullah S, Yusoff PSMM, Ahmad R. The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate. Arab J Sci Eng. 2017; 42:2043–53. doi.org/10.1007/s13369-017-2423-4
  56. Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, et al. Flame retardant coatings: additives, binders, and fillers. Polym. 2022; 14(14):2911. doi.org/10.3390/polym14142911
  57. Lu WM, Ye JW, Zhu LH, Jin ZF, Matsumoto Y. Intumescent flame retardant mechanism of lignosulfonate as a char forming agent in rigid polyurethane foam. Polym. 2021; 13(10): 1585. doi.org/10.3390/polym13101585
  58. Araby S, Philips B, Meng QS, Ma J, Laoui T, Wang CH. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B Eng. 2021; 212, 108675 doi.org/10.1016/j.compositesb.2021.108675
  59. He W, Song P, Yu B, Fang Z, Wang H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020; 114:100687. doi.org/10.1016/j.pmatsci.2020.100687
  60. Mensah RA, Shanmugam V, Narayanan S, Renner JS, Babu K, Neisiany R, et al. A review of sustainable and environment-friendly flame retardants used in plastics. Polym Test. 2022; 108:107511. doi.org/10.1016/j.polymertesting.2022.107511
  61. Li GQ, Lou GB, Zhang C, Wang L, Wang Y. Assess the fire resistance of intumescent coatings by equivalent constant thermal resistance. Fire Technol. 2012; 48:529–46. doi:10.1007/s10694-011-0243-8
  62. Wang G, Yang J. Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure. Prog Org Coat. 2011;70(2):150–6. doi:10.1016/j.porgcoat.2010.10.007
  63. Kalafat K, Taran N, Plavan V, Bessarabov V, Zagoriy G, Vakhitova L. Comparison of fire resistance of polymers in intumescent coatings for steel structures. East-Eur J Enterp Technol. 2020; 4 (10):45–54. doi.org/10.15587/1729-4061.2020.209841
  64. Jimenez M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol. 2006; 201:979–87. doi.org/10.1016/j.surfcoat.2006.01.026
  65. Lucherini A, Abusamha N, Segall-Brown J, Maluk C. Experimental study on the onset of swelling for thin intumescent coatings. J Phys Conf Ser. 2018; 1107(3):032017. doi.org/10.1088/1742-6596/1107/3/032017
  66. Lucherini A, Maluk C. Assessing the onset of swelling for thin intumescent coatings under a range of heating conditions. Fire Saf J. 2019; 106:1–12. doi.org/10.1016/j.firesaf.2019.03.014
  67. Ullah S, Ahmad F. Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire-retardant coating. Polym Degrad Stab. 2014; 103:49-62. doi.org/10.1016/j.polymdegradstab.2014.02.016
  68. Ullah S, Ahmad F, Shariff AM, Bustam MA. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym Degrad Stab. 2014; 110:91–103. doi.org/10.1016/j.polymdegradstab.2014.08.017
  69. Ullah S, Ahmad F, Shariff AM, Bustam MA, Gonfa G, Gillani QF. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog Org Coat. 2017; 109:70–82. doi.org/10.1016/j.porgcoat.2017.04.017
  70. Yasir M, Ahmad F, Megat-Yusoff PSM, Ullah S, Jimenez M. Quantifying the effects of basalt fibers on thermal degradation and fire performance of epoxy-based intumescent coating for fire protection of steel substrate. Prog Org Coatings. 2019; 132:148–58. doi:10.1016/j.porgcoat.2019.03.019
  71. Murat Unlu S, Tayfun U, Yildirim B, Dogan M. Effect of boron compounds on fire protection properties of epoxy based intumescent coating. Fire Mater. 2017; 41:17–28. doi.org/10.1002/fam.2360
  72. Li H, Hu Z, Zhang S, Gu X, Wang H, Jiang P, et al. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog Org Coatings. 2015; 78:318–24. doi:10.1016/j.porgcoat.2014.08.003
  73. Zeng Y, Weinell CE, Dam-Johansen K, Ring L, Kiil S. Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char properties. Prog Org Coat. 2019; 135: 321-30. https://doi.org/10.1016/j.porgcoat.2019.06.020
  74. Gérard C, Fontaine G, Bellayer S, Bourbigot S. Reaction to fire of an intumescent epoxy resin: protection mechanisms and synergy. Polym Degrad Stab. 2012; 97:1366–86. doi:10.1016/j.polymdegradstab.2012.05.025
  75. Gardelle B, Duquesne S, Rerat V, Bourbigot S. Thermal degradation and fire performance of intumescent silicone-based coatings. Polym Adv Technol. 2013; 24:62–9. doi:10.1002/pat.3050
  76. Muller M, Bourbigot S, Duquesne S, Klein R, Giannini G, Lindsay C, et al. Investigation of the synergy in intumescent polyurethane by 3D computed tomography. Polym Degrad Stab. 2013; 98:1638–47.
  77. Snegirev AY, Talalov V, Stepanov V, Harris JN. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J. 2013; 59:132–50. doi:10.1016/j.firesaf.2013.03.012
  78. Wang X, Naderikalali E, Wang D-Y. Two-dimensional inorganic nanomaterials: A solution to flame retardant polymers. Nano Adv. 2016; 1:1−16. doi:10.22180/na155
  79. Xu Z, Jia H, Yan L, Chu Z, Zhou H. Synergistic effects of organically modified montmorillonite in combination with metal oxides on the fire safety enhancement of intumescent flame retarded epoxy resins. J Vinyl Addit Technol. 2020; 27:161-73. doi:10.1002/vnl.21793 
  80. Maznah Kabeb S, Hassan A, Mohamad Z, Sharer Z, Mokhtar M, Ahmad F. Sustainable flame retardant coating based graphene oxide and montmorillonite. Mater. Today. 2022; 51: 1327–31. doi.org/10.1016/j.matpr.2021.11.140
  81. Peng WM, Zhang G, Wang XJ, Zhang ML, Yan GM, Yang J. Fire-safe and tough semi-aromatic polyamide enabled by halloysite-based self-assembled microrods. Appl. Clay Sci. 2022; 229:106657.doi.org/10.1016/j.clay.2022.106657
  82. Wang Z, Han E, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog Org Coat. 2005; 53(1):29–37. doi:10.1016/j.porgcoat.2005.01.004
  83. Wang ZY, Han EH, Ke W. Fire-resistant effect of nanoclay on intumescent nanocomposite coatings. J Appl Polym Sci. 2007; 103(3):1681–89. doi:10.1002/app.25096
  84. Zhang J-Y, Zhao H-B, Zhang A-N, Cheng J-B, Li S-L, Zhao W, et al. Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam.  Compos Part A. Appl Sci Manuf. 2022; 159:107021 doi.org/10.1016/j.compositesa.2022.107021
  85. Dhumal PS, Lokhande KD, Bondarde MP, Bhakare MA, Some S. Heat resistive, binder-free 3d-dough composite as a highly potent flame-retardant. J Appl Polym Sci. 2022; 139:52146. doi.org/10.1002/app.52146
  86. Chuang CS, Sheen HJ. Effects of added nanoclay for styrene-acrylic resin on intumescent fire retardancy and CO/CO2 emission. J Coat Technol Res. 2020; 17:115–125. doi.org/10.1007/s11998-019-00246-x
  87. Zang B, Huo J, Chen B, Gao X, Yao D, Chen J, et al. In‐Depth study of the synergistic flame retardant mechanism of montmorillonite and ifr/sbs composites by real‐time detection of charcoal layer resistance. J Appl Polym Sci. 2025; 1:56770 doi:10.1002/app.56770
  88. Bourbigot S, Sarazin J, Samyn F, Jimenez M. Intumescent ethylene-vinylacetate copolymer: Reaction to fire and mechanistic aspects. Polym Degrad Stab. 2019; 161:235–44. doi:10.1016/j.polymdegradstab.2019.01.029
  89. Hu Y, Wang X, Li J. Regulating effect of exfoliated clay on intumescent char structure and flame retardancy of polypropylene composites. Ind Eng Chem Res. 2016; 55:5892–5901. doi:10.1021/acs.iecr.6b00480
  90. Rathi S, Dahiya JB. Polyamide 66/nanoclay composites: Synthesis, thermal and flammability properties. Adv Mater Lett. 2012; 5:381–387. doi:10.5185/amlett.2012.5354
  91. Vakhitova L, Drizhd V, Taran N, Kalafat K, Bessarabov V. The effect of organoclays on the fire–proof efficiency of intumescent coatings. East-Eur J Enterp Technol. 2016; № 6(84):19–24. doi: 10.15587/1729-4061.2016.84391
  92. Assaedia H, Shaikh FUA, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceram Soc. 2016; 4:19–28. doi:10.1016/j.jascer.2015.10.004
  93. Bourbigot S, Le Bras M, Gilman JW, Kashiwagi T. PA–6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 2000; 24(4):201–8. doi:10.1002/1099-1018(200007/08)24:43.0.CO;2-D
  94. Zhu T, Guo G, Li W, Gao M. Synergistic flame retardant effect between ionic liquid-functionalized imogolite nanotubes and ammonium polyphosphate in unsaturated polyester resin. ACS Omega 2022; 7:47601–09. doi.org/10.1021/acsomega.2c02803
  95. Xu Z, Zhou H, Yan L, Jia H. Comparative study of the fire protection performance and thermal stability of intumescent fire retardant coatings filled with three types of clay nano fillers. Fire Mater. 2020; 44(1):112–120. doi.org/10.1002/fam.2780 
  96. Boostania H, Modirroustab S. Review of nanocoatings for building application. Procedia Eng. 2016; 145:1541– 48. doi:10.1016/j.proeng.2016.04.194
  97. Shen J, Liang J, Lin X, Lin H, Yu J, Wang S. The Flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering Polym. 2021;14(1):82. doi: 10.3390/polym14010082
  98. Kovacevic Z, Flincec GS, Bischof S. Progress in biodegradable flame retardant nano-biocomposites. Polym. 2021; 13(5): 741. doi.org/10.3390/polym13050741
  99. Kaul PK, Anand SJ, Enoch IVMV, Paulraj MS. Synergistic effect of LDH on thermal and flame retardant properties of unsaturated polyester nano-composite containing TXP. Adv Mater Proc. 2017; 2: 351–6. https://doi.org/10.5185/amp.2017/513
  100. Hu X, Luo Y, Liu W, Sun Z. Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection. Carbon. 2022; 187:290–301. https://doi.org/10.1016/j.carbon.2021.11.025.
  101. Shi X, Li X, Shu H, Liu Q, Liu Q, Xie W, et al. Insight into the flame-retardant mechanism of different organic-modified layered double hydroxide for epoxy resin. Appl Clay Sci. 2024; 248:107233. doi: 10.1016/j.clay.2023.107233
  102. Feng Y, Tang P, Xi J, Jiang Y, Li D. Layered double hydroxides as flame retardant and thermal stabilizer for polymers. Recent Pat Nanotechnol. 2012; 6:231–7. doi:10.2174/187221012803531592
  103. Wang Z, Han E, Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER-MEL coating. Polym Degrad Stabil. 2006; 91(9):1937–47. doi:10.1016/j.polymdegradstab.2006.03.001
  104. Wang Z, Han E, Ke W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf Coat Technol. 2005; 200(20): 5706–16. doi:10.1016/j.surfcoat.2005.08.102
  105. Wang Z, Han E, Liu F, Ke W. Fire and corrosion resistances of intumescent nano-coating containing nano-SiO2 in salt spray condition. J Mater Sci Technol. 2010; 26(1):75–81. doi:10.1016/S1005-0302(10)60012-6  
  106. Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A. Flame retardant mechanism of silica gel/silica. Fire Mater. 2000; 24(6):277–89. doi:10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A
  107. Gao D, Wen X, Guan Y, Czerwonko W, Li Y, Gao Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites. Compos Commun. 2020; 17:170–6. doi: 10.1016/j.coco.2019.12.007.
  108. Aziz H. Comprehensive microstructural and thermal analysis of nano intumescent. Fire retardant coating for structural applications. Int J Mater Metall Eng. 2015; 9(12): 88723.
  109. Wang Z, Han E, Liu F, Ke W Thermal behavior of nano-TiO2 in fire-resistant coating. J Mater Sci Technol. 2007; 23(4): 547-50. // https://www.jmst.org/EN/Y2007/V23/I04/547
  110. Zhou Y, Liu X, Wang F, Hao J-W, Du J-X. Effect of metal oxides on fire resistance and char formation of intumescent flame retardant coating. J Inorg Mater. 2014; 29:972-8. doi:10.15541/jim20130686
  111. Aziz H, Ahmad F. Efects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Prog Org Coat. 2016; 101:431–9. doi:10.1016/j.porgcoat.2016.09.017
  112. Aziz H, Ahmad F, Zia-ul-Mustafa M. Efect of titanium oxide on fire performance of intumescent fire retardant coating. Adv Mat Res. 2014; 935:224–8. doi.org/10.4028/www.scientific.net/AMR.935.224
  113. Vahidi G; Bajwa DS, Shojaeiarani J, Stark N, Darabi A. Advancements in traditional and nanosized flame retardants for polymers – A review. J Appl Polym Sci. 2021; 138: 50050. https://doi.org/10.1002/app.50050.
  114. Esmailpour A, Majidi R, Taghiyari HR, Ganjkhani M, Armaki SMM, Papadopoulos AN. Improving fire retardancy of beech wood by graphene. Polym. 2020; 12(2): 303. doi.org/10.3390/polym12020303
  115. Gavgani JN, Adelnia H, Gudarzi MM. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci. 2013; 49:243–54. doi:10.1007/s10853-013-7698-6.
  116. Dowbysz A, Samsonowicz M, Kukfisz B, Koperniak P. Recent developments of nano flame retardants for unsaturated polyester resin. Materials. 2024; 17:852. doi.org/10.3390/ma17040852
  117. Kovacevic Z, Flincec GS, Bischof S, Progress in biodegradable flame retardant nano-biocomposites. Polym. 2021; 13(5):741. doi.org/10.3390/polym13050741
  118. Gu QY, Chen JN. Carbon-nanotube-based nano-emitters: A review. J Lumin. 2018; 200: 181–8. doi.org/10.1016/j.jlumin.2018.04.022
  119. Wang Z, Lei C, Fusheng C, Zhaozhan G, Juncheng J. Effects of carbon materials on fire protection and smoke suppression of waterborne intumescent coating. Prog Org Coat. 2020; 140: 105491. doi:10.1016/j.porgcoat.2019.105491
  120. Beheshti A, Heris SZ. Is MWCNT a good synergistic candidate in APP–PER–MEL intumescent coating for steel structure? Prog Org Coat. 2016; 90: 252–7. doi.org/10.1016/j.porgcoat.2015.10.023
  121. Zhan W, Ni L, Gu ZZ, Cui FS, Jiang JC, Chen L. The influences of graphene and carbon nanotubes on properties of waterborne intumescent fire resistive coating. Powder Technol. 2021; 385: 572–9. doi.org/10.1016/j.powtec.2021.03.018
  122. Chen CL, Xiao GQ, Zhong F, Dong ST, Yang ZW, Chen CY, et al. Synergistic effect of carbon nanotubes bonded graphene oxide to enhance the flame retardant performance of waterborne intumescent epoxy coatings. Prog. Org. Coat. 2022; 162:106598. doi.org/10.1016/j.porgcoat.2021.106598
  123. Yu X, Wang D, Yuan B, Song L Hu Y. The effect of carbon nanotubes/NiFe2O4 on the thermal stability, combustion behavior and mechanical properties of unsaturated polyester resin. RSC Adv. 2016; 6: 96974–83. doi.org/10.1039/C6RA15246E
  124. Ullah S, Ahmad F, Shariff AM, Raza MR, Massetd PJ. The role of multi-wall carbon nanotubes in char strength of epoxy based intumescent fire retardant coating. J Anal Appl Pyrolysis. 2017; 124:149–160. doi:10.1016/j.jaap.2017.02.011
  125. Hofmann D, Wartig KA, Thomann R, Dittrich B, Schartel B., Muelhaupt R. Fuctionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol Mater Eng. 2013; 298:1322-34. doi:10.1002/mame.201200433
  126. Jamsaz A, Goharshadi EK. Graphene-based flame-retardant polyurethane: a critical review. Polym Bull. 2023; 80(14). 11633–69. doi:10.1007/s00289-022-04585-5
  127. Sang B, Li Z-W, Li X-H, Yu L-g, Zhang Z-J. Graphene-based flame retardants: a review. J Mater Sci. 2016; 51(18):8271–95. doi:10.1007/s10853-016-0124-0
  128. Tang G, Shang C, Qin Y, Lai J. Current advances in flame-retardant performance of tunnel intumescent fireproof coatings: a review. Coatings. 2025; 15:99. https://doi.org/10.3390/coatings15010099
  129. Li G. Effects of EG and MoSi2 on thermal degradation of intumescent coating. Polym Degrad Stab. 2007; 92: 569–79. doi.org/10.1016/j.polymdegradstab.2007.01.018
  130. Ullah S, Ahmad F. Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating. Polym. Degrad. Stab. 2014: 103: 49–62. doi.org/10.1016/j.polymdegradstab.2014.02.016
  131. Zhu S-E, Wang L-L, Wang M-Z, Yuen A C-Y, Chen TBY, Yang W, et al. Simultaneous enhancements in the mechanical, thermal stability, and flame retardant properties of poly(1,4-butylene terephthalate) nanocomposites with a novel phosphorus–nitrogen-containing polyhedral oligomeric silsesquioxane. RSC Advances. 2017; 7(85): 54021–30. doi:10.1039/C7RA11437K
  132. Dowbysz, A, Samsonowicz M, Kukfisz B. Recent advances in bio-based additive flame retardants for thermosetting resins. Int J Environ Res Public Health. 2022; 19(8):4828. doi.org/10.3390/ijerph19084828
  133. Li F-F. Comprehensive review of recent research advances on flame-retardant coatings for building materials: chemical ingredients, micromorphology, and processing techniques. Molecules. 2023; 28:1842. doi.org/ 10.3390/molecules28041842
  134. Malucelli G. Biomacromolecules and bio-sourced products for the design of flame retarded fabrics: Current state of the art and future perspectives. Molecules. 2019; 24(20):3774. doi.org/10.3390/molecules24203774
  135. Sag J, Goedderz D, Kukla P, Greiner L, Schonberger F, Doring M. Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins. Molecules. 2019; 24(20):3746. doi.org/10.3390/molecules24203746
  136. Pan Y, Liu L, Song L, Hu Y, Jiang S, Zhao H. Reinforcement of layer-by-layer self-assembly coating modified cellulose nanofibers to reduce the flammability of polyvinyl alcohol. Cellulose. 2019; 26:3183–3192. doi.org/10.1007/s10570-019-02298-z
  137. Kovacevic Z, Flincec GS, Bischof S. Progress in biodegradable flame retardant nano-biocomposites. Polym. 2021; 13(5):741. doi.org/10.3390/polym13050741
  138. Vahidi G, Bajwa DS, Shojaeiarani J, Stark N, Darabi A. Advancements in traditional and nanosized flame retardants for polymers – A review. J Appl Polym Sci 2021; 138:50050. https://doi.org/10.1002/app.50050
  139. Tavakoli M, Ghasemian A, Dehghani-Firouzabadi MR, Mazela B. Cellulose and its nano-derivatives as a water-repellent and fire-resistant surface: a review. Mater. 2022; 15:82. doi.org/10.3390/ma15010082
  140. Araby S, Meng Q, Zhang L, Zaman I, Majewski P, Ma J. Elastomeric composites based on carbon nanomaterials. Nanotechnology. 2015; 26(11):112001. doi:10.1088/0957-4484/26/11/112001
  141. Vahidi G, Bajwa DS, Shojaeiarani J, Stark N, Darabi A. Advancements in traditional and nanosized flame retardants for polymers – A review. J Appl Polym Sci. 2021; 138(12):50050. doi.org/10.1002/app.50050.6.
  142. Giri R, Nayak L, Rahama M. Flame and fire retardancy of polymer-based composites. Mater Res Innov. 2020; 1728073. doi: 10.1080/14328917.2020.1728073
  143. Lou F, Wu K, Wang Q, Qian Z, Li S, Guo W. Improved flame-retardant and ceramifiable properties of eva composites by combination of ammonium polyphosphate and aluminum hydroxide. Polym. 2019; 11:125. doi.org/10.3390/polym11010125
  144. Di HW, Deng C, Li RM, Dong LP, Wang YZ. A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. RSC Adv. 2015; 5:51248–57. doi.org/10.1039/C5RA05781G
  145. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Cuesta J-ML, Espiell F. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/ montmorillonite and magnesium hydroxide/aluminium hydroxide/ montmorillonite mixtures. Polym Degrad Stab. 2007; 92:1082–87. doi:10.1016/j.polymdegradstab.2007.02.014
  146. Costache M, Jiang DD, Wilkie CA. Thermal degradation of ethlenevinyl acetate copolymer nanocomposites. Polym. 2005; 46: 6947–58. https://doi.org/10.1016/j.polymer.2005.05.084
  147. Duquesne S, Bachelet P, Bellayer S, Bourbigot S, Mertens W. Influence of inorganic fillers on the fire protection of intumescent coatings. J Fire Sci. 2013; 31:258-75 doi:10.1177/0734904112467291
  148. Тang Y, Hu Y, Xiao J, Wang J, Song L, Fan W. PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations. Polym Adv Technol. 2005; 16:338–43. doi:10.1002/pat.586
  149. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites/ Araby S, Philips B, Meng Q, Ma J, Laoui T, Wang CH. Compos B Eng. 2021; 212:108675. doi.org/10.1016/j.compositesb.2021.108675
  150. Mngomezulu ME, John MJ. Thermoset-cellulose nanocomposites: flammability characteristics. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresn A. (Eds.), Handbook of Nanocellulose and Cellulose Nanocomposites. John Wiley & Sons, 2017; 235–72. doi:10.1002/9783527689972.ch7
  151. Padil VVT, Akshay Kumar KP, Murugesan S, Torres-Mendieta R, Wacławek S, Cheong JY, et al. Sustainable and safer nanoclay composites for multifaceted applications. Green Chem. 2022; 24: 3081–114. doi.org/10.1039/D1GC03949K
  152. Hu J, Zhang F. Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites. J Therm Anal Calorim. 2014; 118:1561-1568. doi:10.1007/s10973-014-4078-7
  153. Kolya H, Kang C-W. Eco-Friendly polymer nanocomposite coatings for next-generation fire retardants for building materials. Polym. 2024; 16:2045. doi.org/10.3390/polym16142045
  154. Malucelli G, Carosio F, Alongi J, Fina A, Frache A, Camino G. Materials engineering for surface-confined flame retardancy. Mater Sci Eng. R Rep. 2014; 84:1–20. doi:10.1016/j.mser.2014.08.001
  155. Kashiwagi T, Harris RHJr, Zhang X, Briber RM. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polym. 2004; 45:881–91. doi:10.1016/j.polymer.2003.11.036

156. Alongi J, Carosio F. All-Inorganic intumescent nanocoating containing montmorillonite nanoplatelets in ammonium polyphosphate matrix capable of preventing cotton ignition. Polym. 2016; 8:1–14. doi:10.3390/polym8120430.

Modern construction is characterized by an increasing use of steel structural members. This is due to their strength, durability, and their capability to ensure rapid structure assembly. One of the key requirements for such structures is ensuring an adequate level of fire safety, which is achieved through the application of reactive coatings. The most effective means in this regard are intumescent coatings, which form a thermal insulation layer at high temperatures. Such a layer preserves the load-bearing capacity of structures through thermal insulation. Recently, significant attention has been given to improving the properties of intumescent systems and enhancing their fire-retardant efficiency. A promising direction is the use of nanotechnology, which enables the creation of environmentally friendly, fire-resistant, and durable fire-retardant coatings. Fire-retardant coatings that contain nanomaterials are called nanocoatings. Among the most common and multifunctional nanofillers used in reactive coatings are layered nanoclays, LDH compounds, nanostructured carbon forms, silicon and metal nano-oxides. Nanomaterials play a key role in enhancing the fire-retardant properties of intumescent systems by participating in both chemical and physical fire protection mechanisms. An interesting research direction is the development of environmentally safe nanofillers, particularly the bio-based ones, which opens up opportunities for creating new materials with improved performance characteristics. Given these factors, nanomaterials continue to be a promising direction for the advancement of fire-retardant coatings.

Keywords : Fire-Retardant Nanocoatings, Intumescent Coating, Nanomaterials, Layered Nanosilicates, LDH, Nanostructured Carbon, Nano Silica Oxide.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe