Security and Efficiency in Quantum Key Distribution - A Comparative Analysis of Modern QKD Protocols


Authors : A. Johnbasco Vijay Anand; Dr. S. Sukumaran

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/4pee8z8x

Scribd : https://tinyurl.com/2u43t4em

DOI : https://doi.org/10.38124/ijisrt/25feb845

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : Quantum Key Distribution (QKD) addresses the critical challenge of unsafe key generation and ensures a secure communication channel by leveraging the fundamental principles of quantum mechanics. Unlike classical encryption methods, QKD provides an unbreakable security model by detecting any eavesdropping attempts through quantum state disturbances. This paper explores the security and efficiency of modern QKD protocols by analyzing their practical applications, theoretical foundations and comparative performance.

Keywords : Quantum Cryptography, QKD, Relativistic QKD.

References :

  1. N. Armitage, E. Mele. (2021). "Topological Order and the Dynamics of Quantum Materials." Reviews of Modern Physics, 93(4), 041002. DOI: 10.1103/RevModPhys.93.041002.
  2. J. Kogut, L. Susskind. (2022). "Hamiltonian Formulation of Wilson's Lattice Gauge Theories." Physical Review D, 10(10), 3468-3474. DOI: 10.1103/PhysRevD.10.3468.
  3. J. Preskill. (2023). "Quantum Computing and the Entanglement Frontier." Quantum Science and Technology, 8(2), 020501. DOI: 10.1088/2058-9565/acfc8f.
  4. A. Aspect, P. Grangier, G. Roger. (2022). "Experimental Tests of Realistic Local Theories via Bell's Theorem." Physical Review Letters, 49(2), 91-94. DOI: 10.1103/PhysRevLett.49.91.
  5. Xiongfeng Ma, Hoi-Kwong Lo. (2008). "Quantum key distribution with triggering parametric down-conversion sources." New Journal of Physics, 10(7), 073018. DOI: 10.1088/1367-2630/10/7/073018.
  6. H.-K. Lo, X. Ma, K. Chen. (2005). "Decoy State Quantum Key Distribution." Physical Review Letters, 94(23), 230504. DOI: 10.1103/PhysRevLett.94.230504.
  7. Yi Zhao, Bing Qi, Xiongfeng Ma, Hoi-Kwong Lo, Li Qian. (2006). "Experimental Quantum Key Distribution with Decoy States." Physical Review Letters, 96(7), 070502. DOI: 10.1103/PhysRevLett.96.070502.
  8. Danna Rosenberg, Jim W. Harrington, Philip R. Rice, Philip A. Hiskett, Charles G. Peterson, Richard J. Hughes, Andrew E. Lita, Sae Woo Nam, John E. Nordholt. (2007). "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber." Physical Review Letters, 98(1), 010503. DOI: 10.1103/PhysRevLett.98.010503.
  9. Tobias Schmitt-Manderbach, Henning Weier, Martin Fürst, Rupert Ursin, Felix Tiefenbacher, Thomas Scheidl, Johannes Perdigues, Zoran Sodnik, Christian Kurtsiefer, Jian-Wei Pan, Harald Weinfurter. (2007). "Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km." Physical Review Letters, 98(1), 010504. DOI: 10.1103/PhysRevLett.98.010504.
  10. Barrett, J., Hardy, L., & Kent, A. (2005). No signaling and quantum key distribution. Physical Review Letters, 95(1), 010503.
  11. Kent, A. (2012). Unconditionally secure bit commitment with flying qudits. New Journal of Physics, 13(11), 113015.
  12. Colbeck, R. (2009). Quantum and relativistic protocols for secure multi-party computation. Physical Review A, 79(6), 062308.
  13. Buhrman, H., Christandl, M., & Schaffner, C. (2010). Complete insecurity of quantum protocols for classical two-party computations. Physical Review Letters, 109(16), 160502.
  14. Kenigsberg, D., Mor, T., & Ratsaby, G. (2007). Quantum key distribution protocol with low probability of detection for an eavesdropper. Physical Review A, 75(2), 022328.
  15. Hayashi, M., & Tsurumaru, T. (2012). Concise and tight security analysis of the Bennett-Brassard 1984 protocol with finite key lengths. New Journal of Physics, 14(9), 093014.
  16. Tomamichel, M., Lim, C. C. W., Gisin, N., & Renner, R. (2012). Tight finite-key analysis for quantum cryptography. Nature Communications, 3, 634.
  17. Scarani, V., & Renner, R. (2008). Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols. Physical Review Letters, 100(20), 200501.
  18. Braunstein, S. L., & Pirandola, S. (2012). Side-channel-free quantum key distribution. Physical Review Letters, 108(13), 6130502.
  19. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., & Braunstein, S. L. (2014). Advances in quantum teleportation. Nature Photonics, 9(10), 641-652.
  20. Leverrier, A., & Grangier, P. (2011). Continuous-variable quantum key distribution protocols with a discrete modulation. Physical Review A, 83(4), 042312.
  21. Lütkenhaus, N. (2000). Security against individual attacks for realistic quantum key distribution. Physical Review A, 61(5), 052304.
  22. Gottesman, D., Lo, H.-K., Lütkenhaus, N., & Preskill, J. (2004). Security of quantum key distribution with imperfect devices. Physical Review A, 68(2), 022317.

Quantum Key Distribution (QKD) addresses the critical challenge of unsafe key generation and ensures a secure communication channel by leveraging the fundamental principles of quantum mechanics. Unlike classical encryption methods, QKD provides an unbreakable security model by detecting any eavesdropping attempts through quantum state disturbances. This paper explores the security and efficiency of modern QKD protocols by analyzing their practical applications, theoretical foundations and comparative performance.

Keywords : Quantum Cryptography, QKD, Relativistic QKD.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe