Authors :
Moumika Mondal
Volume/Issue :
Volume 10 - 2025, Issue 10 - October
Google Scholar :
https://tinyurl.com/5bpunxvm
Scribd :
https://tinyurl.com/56xkvmx7
DOI :
https://doi.org/10.38124/ijisrt/25oct750
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
The worldwide emergence of Carbapenem-resistant Pseudomonas aeruginosa has become a global threat to
public health, the clinical industry, the food industry, and the global economy as Carbapenm is the last resort drug for
Multi-drug resistant Pseudomonas aeruginosa [25, 28]. Pseudomonas aeruginosa is a gram-negative bacilli ubiquitously
found in nature that causes serious nosocomial infections increasing the severity of the health condition of hospitalized
patients and adding to morbidity and mortality. Recent studies have discovered the emergence of Metallo-beta-lactamase
genes in CRPA as a critical issue behind the rapid spread of CRPA strains internationally. Along with intrinsic
mechanisms, CRPA strains have been found to contain these MBL genes in mobile genetic elements with other antibiotic-
resistant genes, exacerbating the situation [3, 5, 29-31, 37, 38, 49]. In this study selected studies have been discussed that have been
published in the last ten years in India to understand the epidemiological situation of our country on the significance of
MBL genes in CRPA emergence. Furthermore, the impact of it on a global scale can also be delineated. It not only helps to
understand the issues in-depth but also, to address the current approaches by which the resistance can be avoided without
the constant need for another novel antibiotic. Antibiotic dosage abuse is another crucial factor in the MDRPA emergence
[34]. There are multiple novel approaches being studied around the world. Chitosan-encapsulated POMs
(Polyoxometalates) are one such solution that shows very promising potential. It is also a cheaper, easily produced,
malleable, and bio-sustainable option than other available nanoparticle therapies. This nano-system can work as a suitable
drug delivery system for Carbapenem by releasing the desired drug in a dose-dependent manner as well as containing self-
antibacterial activity itself, efficient to combat both intrinsic and extrinsic resistance mechanisms in CRPA. Additionally,
it can show efficiency in breaking the biofilm barrier created by many CRPA strains as an additional resistance
mechanism [27, 41, 43]. The efficiency of the tiny drug carriers can be enhanced many times by immobilizing phage-encoded
Tail Spike Proteins on them. This can confirm a targeted delivery of Carbapenem to treat MDRPA and reduce the chances
of further emergence of CRPA strains [65, 66, 67]. This review article focuses on the potential of this newer approach to solve
the ongoing CRPA issue.
Keywords :
Carbapenem-Resistant Pseudomonas aeruginosa; Metallo-Beta-Lactamase; Phage Therapy; Chitosan Polyoxomolybdate. Phage-Encoded Tail Spike Proteins.
References :
- Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. bla(IMP) and bla(VIM) mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Dev Ctries. 2012 Nov 26;6(11):757-62. doi: 10.3855/jidc.2268. PMID: 23277500.
- Arunagiri K, Sekar B, Sangeetha G, John J. Detection and characterization of metallo-beta-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J. 2012 Nov;61(8):778-83. PMID: 23757897.
- Deshmukh DG, Damle AS, Bajaj JK, Bhakre JB, Patwardhan NS. Metallo-β-lactamase-producing clinical isolates from patients of a tertiary care hospital. Journal of laboratory physicians. 2011 Jul;3(02):093-7.
- Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, Yoon SS, Thamlikitkul V, Hsueh PR, Yasin RM, Lalitha MK. Dissemination of metallo-β-lactamase-producing Pseudomonas aeruginosa of sequence type 235 in Asian countries. Journal of Antimicrobial Chemotherapy. 2013 Dec 1;68(12):2820-4.
- Kaur J, Chopra S, Mahajan G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. Journal of clinical and diagnostic research: JCDR. 2013 Feb 1;7(2):229.
- Kumari M, Verma S, Venkatesh V, Gupta P, Tripathi P, Agarwal A, Siddiqui SS, Arshad Z, Prakash V. Emergence of blaNDM-1 and blaVIM producing Gram-negative bacilli in ventilator-associated pneumonia at AMR Surveillance Regional Reference Laboratory in India. PLoS One. 2021 Sep 8;16(9):e0256308.
- Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, Morioka H, Tetsuka N, Yagi T. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. Journal of medical microbiology. 2017 Nov;66(11):1562-72.
- Kumar R, Srivastva P, Rishi S, Dahiya SS, Hemwani K, P.S Nirwan. Detection and antimicrobial susceptibility pattern of Pseudomonas aeruginosa isolates in various clinical samples with special reference to metallo beta lactamase from a tertiary care hospital in Jaipur, India. Natl J Med Res. 2014 Jun. 30; 4(02):128-31.
- Kaur J, Chopra S, Mahajan G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. Journal of clinical and diagnostic research: JCDR. 2013 Feb 1;7(2):229.
- Ranjan, Shikha; Banashankari, Gunjiganur Shankarappa; Sreenivasa Babu, Poolakunta Ramaiah. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: A prospective study. Medical Journal of Dr. D.Y. Patil University 8(5):p 599-605, Sep–Oct 2015. | DOI: 10.4103/0975-2870.164977.
- Kotwal A, Biswas D, Kakati B, Singh M. ESBL and MBL in cefepime resistant Pseudomonas aeruginosa: an update from a rural area in Northern India. Journal of clinical and diagnostic research: JCDR. 2016 Apr 1;10(4):DC09.
- Kar B, Sharma M, Peter A, Chetia P, Neog B, Borah A, Pati S, Bhattacharya D. Prevalence and molecular characterization of β-lactamase producers and fluoroquinolone resistant clinical isolates from North East India. Journal of Infection and Public Health. 2021 May 1;14(5):628-37.
- Pragasam AK, Vijayakumar S, Bakthavatchalam YD, Kapil A, Das BK, Ray P, Gautam V, Sistla S, Parija SC, Walia K, Ohri VC. Molecular characterisation of antimicrobial resistance in Pseudomonas aeruginosa and Acinetobacter baumannii during 2014 and 2015 collected across India. Indian journal of medical microbiology. 2016 Oct 1;34(4):433-41.
- Paul D, Dhar D, Maurya AP, Mishra S, Sharma GD, Chakravarty A, Bhattacharjee A. Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India. Ann Clin Microbiol Antimicrob. 2016 May 6;15:31. doi: 10.1186/s12941-016-0146-0. PMID: 27154587; PMCID: PMC4859973.
- Mohanty S, Maurya V, Gaind R, Deb M. Phenotypic characterization and colistin susceptibilities of carbapenem-resistant of Pseudomonas aeruginosa and Acinetobacter spp. J Infect Dev Ctries. 2013 Nov 15;7(11):880-7. doi: 10.3855/jidc.2924. PMID: 24240048.
- Mohanam L, Menon T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J Med Res. 2017 Jul;146(Supplement):S46-S52. doi: 10.4103/ijmr.IJMR_29_16. PMID: 29205195; PMCID: PMC5735570.
- Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial resistance and infection control. 2014 Dec;3:1
- Verma N, Prahraj AK, Mishra B, Behera B, Gupta K. Detection of carbapenemase-producing Pseudomonas aeruginosa by phenotypic and genotypic methods in a tertiary care hospital of East India. J Lab Physicians. 2019 Oct-Dec;11(4):287-291. doi: 10.4103/JLP.JLP_136_19. PMID: 31929692; PMCID: PMC6943860.
- Paul D, Chanda DD, Chakravarty A, Bhattacharjee A. An insight into analysis and elimination of plasmids encoding metallo-β-lactamases in Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance. 2020 Jun;21:3-7. DOI: 10.1016/j.jgar.2019.09.002. PMID: 31518725.
- Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, Morioka H, Tetsuka N, Yagi T. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. Journal of medical microbiology. 2017 Nov;66(11):1562-72.
- Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. International journal of environmental research and public health. 2010 Apr;7(4):1342-65..
- Wade N, Tehrani KH, Brüchle NC, van Haren MJ, Mashayekhi V, Martin NI. Mechanistic Investigations of Metallo‐β‐lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition. ChemMedChem. 2021 May 18;16(10):1651-9.
- Kashyap A, Gupta R, Sharma R, Verma VV, Gupta S, Goyal P. New Delhi metallo beta lactamase: menace and its challenges. J Mol Genet Med. 2017 Oct 30;11(4):299.
- Saini S, Bharati K, Shaha C, Mukhopadhyay CK. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani. Scientific Reports. 2017 Sep 5;7(1):10488.
- Kim SW, Lee JS, Park SB, Lee AR, Jung JW, Chun JH, Lazarte JM, Kim J, Seo JS, Kim JH, Song JW. The importance of porins and β-lactamase in outer membrane vesicles on the hydrolysis of β-lactam antibiotics. International journal of molecular sciences. 2020 Apr 17;21(8):2822.
- González JM, Meini MR, Tomatis PE, Martín FJ, Cricco JA, Vila AJ. Metallo-β-lactamases withstand low Zn (II) conditions by tuning metal-ligand interactions. Nature chemical biology. 2012 Aug;8(8):698-700.
- Rai M, Kon K, Gade A, Ingle A, Nagaonkar D, Paralikar P, da Silva SS. Antibiotic resistance: can nanoparticles tackle the problem. Antibiot. Resist. 2016.
- Kumar M, Curtis A, Hoskins C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics. 2018 Jan 14;10(1):11.
- Rhodes NJ, Wunderink RG. Empiric Carbapenems for Nosocomial Pneumonia: Is Hindsight Clearer in 2020?. Chest. 2021 Mar 1;159(3):897-9.
- D Pragasam AK, Veeraraghavan B, Anandan S, Narasiman V, Sistla S, Kapil A, Mathur P, Ray P, Wattal C, Bhattacharya S, Deotale V. Dominance of international high-risk clones in carbapenemase-producing Pseudomonas aeruginosa: Multicentric molecular epidemiology report from India. Indian Journal of Medical Microbiology. 2018 Jul 1;36(3):344-51.
- Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Therapeutic advances in infectious disease. 2016 Feb;3(1):15-21.
- Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clinical microbiology reviews. 2007 Jul;20(3):440-58.
- PN SR. Extended Spectrum Beta-Lactamases-A Comprehensive Review. 2015.
- Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015 Jan 1;22(1):90-101.
- Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical Microbiology and Infection. 2014 Sep 1;20(9):831-8.
- Tsao LH, Hsin CY, Liu HY, Chuang HC, Chen LY, Lee YJ. Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. Journal of microbiology, immunology and infection. 2018 Jun 1;51(3):359-66.
- Upadhyay S, Mishra S, Sen MR, Banerjee T, Bhattacharjee A. Co-existence of Pseudomonas-derived cephalosporinase among plasmid encoded CMY-2 harbouring isolates of Pseudomonas aeruginosa in north India. Indian Journal of Medical Microbiology. 2013 Jul 1;31(3):257-60.
- S Alsaadi LA, Al-Dulaimi AA, Rasheed Al-Taai HR. Prevalence of bla VIM, bla IMP and bla NDM Genes in Carbapenem Resistant Pseudomonas Aeruginosa Isolated from Different Clinical Infections in Diyala, Iraq. Indian Journal of Public Health Research & Development. 2020 Feb 1;11(2).
- SARKAR S, DUTTA S, NAMHATA A, BANERJEE C, SENGUPTA M, SENGUPTA M. Beta-lactamase Profile and Biofilm Production of Pseudomonas aeruginosa Isolated from a Tertiary Care Hospital in Kolkata, India. Journal of Clinical & Diagnostic Research. 2020 Oct 1;14(10).
- Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020 Sep 30;19(1):45. doi: 10.1186/s12941-020-00389-5. PMID: 32998720; PMCID: PMC7528332
- Serwer P, Wright ET, Gonzales CB, Serwer P, Wright ET, Gonzales CB. Phage capsids as gated, long-persistence, uniform drug delivery vehicles. Current and Future Aspects of Nanomedicine. 2020 Apr 20.
- Bijelic A, Aureliano M, Rompel A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chemical. Communications. 2018;54(10):1153-69.
- Conti, Simona. Biomedical Studies on Chitosan Materials and Polyoxometalate Nanocomposites as Versatile Anticancer and Antimicrobial Drug Prototypes. PhD diss., University of Zurich, 2019.
- Gutiérrez D, Fernández L, Rodríguez A, García P. Practical method for isolation of phage deletion mutants. Methods and protocols. 2018 Jan 17;1(1):6.
- Gumerova NI, Al-Sayed E, Krivosudský L, Čipčić-Paljetak H, Verbanac D, Rompel A. Antibacterial activity of polyoxometalates against Moraxella catarrhalis. Frontiers in chemistry. 2018 Aug 14;6:336.
- Armstrong T, Fenn SJ, Hardie KR. JMM Profile: Carbapenems: a broad-spectrum antibiotic. Journal of medical microbiology. 2021 Dec 10;70(12):001462.
- Jeon JH, Lee JH, Lee JJ, Park KS, Karim AM, Lee CR, Jeong BC, Lee SH. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci. 2015 Apr 29;16(5):9654-92. doi: 10.3390/ijms16059654. PMID: 25938965; PMCID: PMC4463611.
- Chaudhari V, Gunjal S, Mehta M. Antibiotic resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Central India. Int J Med Sci Public Health. 2013 Apr 1;2(2):386-9.
- Lee YL, Ko WC, Hsueh PR. Geographic patterns of carbapenem-resistant Pseudomonas aeruginosa in the Asia-Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2015–2019. Antimicrobial agents and chemotherapy. 2022 Feb 15;66(2):e02000-21.
- Wong MH, chi Chan EW, Chen S. Isolation of carbapenem-resistant Pseudomonas spp. from food. Journal of Global Antimicrobial Resistance. 2015 Jun 1;3(2):109-14.
- Acharya M, Joshi PR, Thapa K, Aryal R, Kakshapati T, Sharma S. Detection of metallo-β-lactamases-encoding genes among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal. BMC Res Notes. 2017 Dec 8;10(1):718. doi: 10.1186/s13104-017-3068-9. PMID: 29216906; PMCID: PMC5721655.
- Li F, Chen D, Li L, Liang D, Wang F, Zhang B. Analysis of metallo-β-lactamases, oprD mutation, and multidrug resistance of β-lactam antibiotic-resistant strains of Pseudomonas aeruginosa isolated from Southern China. Current Microbiology. 2020 Nov;77:3264-9.
- Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000 Apr;44(4):891-7. doi: 10.1128/AAC.44.4.891-897.2000. PMID: 10722487; PMCID: PMC89788.
- Babu KV, Visweswaraiah DS, Kumar A. The influence of Imipenem resistant metallo-beta-lactamase positive and negative Pseudomonas aeruginosa nosocomial infections on mortality and morbidity. J Nat Sci Biol Med. 2014 Jul;5(2):345-51. doi: 10.4103/0976-9668.136181. PMID: 25097412; PMCID: PMC4121912.
- Ellappan K, Narasimha HB, Kumar S. Co-existence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. Journal of global antimicrobial resistance. 2018 Mar 1;12:37-43.
- Kumar KM, Saikumar C. To Study The Antimicrobial Susceptibility Pattern Of Pseudomonas Aeruginosa And Detection Of Metallo Beta Lactamase Producing Strain With Special Reference To blaNDM-1 And blaVIM. Annals Of The Romanian Society For Cell Biology. 2021;25(1):2998-3013.
- Xu H, Bao X, Wang Y, Xu Y, Deng B, Lu Y, Hou J. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virology Journal. 2018 Dec;15:1-8.
- Brown WL, Mastico RA, Wu M, Heal KG, Adams CJ, Murray JB, Simpson JC, Lord JM, Taylor-Robinson AW, Stockley PG. RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology. 2003 Jan 30;45(4-6):371-80.
- Carmody CM, Goddard JM, Nugen SR. Bacteriophage capsid modification by genetic and chemical methods. Bioconjugate chemistry. 2021 Mar 4;32(3):466-81.
- Duyvesteyn HM, Santos-Pérez I, Peccati F, Martinez-Castillo A, Walter TS, Reguera D, Goñi FM, Jiménez-Osés G, Oksanen HM, Stuart DI, Abrescia NG. Bacteriophage PRD1 as a nanoscaffold for drug loading. Nanoscale. 2021;13(47):19875-83.
- Anand T, Virmani N, Bera BC, Vaid RK, Kumar A, Tripathi BN. Applications of personalised phage therapy highlighting the importance of bacteriophage banks against emerging antimicrobial resistance. Def Life Sci J. 2020;5(4):305-14.
- Dostalova S, Jimenez AM, Vaculovicova M, Adam V, Kizek R. Phage Capsid for Efficient Delivery of Cytotoxic Drugs. Int. J. Pharmacol. Pharm. Sci.:601-4.
- Sharma S, Datta S, Chatterjee S, Dutta M, Samanta J, Vairale MG, Gupta R, Veer V, Dwivedi SK. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Scientific Reports. 2021 Sep 29;11(1):19393.
- Menon ND, Kumar MS, Satheesh Babu TG, Bose S, Vijayakumar G, Baswe M, Chatterjee M, D’Silva JR, Shetty K, Haripriyan J, Kumar A. A Novel N4-Like Bacteriophage isolated from a wastewater source in South India with activity against several multidrug-resistant clinical Pseudomonas aeruginosa isolates. Msphere. 2021 Feb 24;6(1):10-128.
- Knecht LE, Veljkovic M, Fieseler L. Diversity and Function of Phage Encoded Depolymerases. Front Microbiol. 2020 Jan 10;10:2949. doi: 10.3389/fmicb.2019.02949. PMID: 31998258; PMCID: PMC6966330.
- Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Computational and Structural Biotechnology Journal. 2021 Jan 1;19:3416-26.
- Kaushal J, Singh G, Arya SK. Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnology Reports. 2018 Jun 1;18:e00258.
- Budriene S, Gorochovceva N, Romaskevic T, Yugova LV, Miezeliene A, Dienys G, Zubriene A. β-Galactosidase from Penicillium canescens. Properties and immobilization. Central European journal of chemistry. 2005 Mar;3:95-105.
- Bartell PF, Lam GK, Orr TE. Purification and properties of polysaccharide depolymerase associated with phage-infected Pseudomonas aeruginosa. Journal of Biological Chemistry. 1968 May 10;243(9):2077-80.
- Hassan ME, Yang Q, Xiao Z, Liu L, Wang N, Cui X, Yang L. Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech. 2019 Dec;9(12):440. doi: 10.1007/s13205-019-1969-0. Epub 2019 Nov 8. PMID: 31750038; PMCID: PMC6841786.
- Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied microbiology and biotechnology. 2017 Apr;101:3103-19.
- Bashar S, Sanyal SK, Sultana M, Hossain MA. Emergence of IntI1 associated bla VIM-2 gene cassette-mediated carbapenem resistance in opportunistic pathogen Pseudomonas stutzeri. Emerging Microbes & Infections. 2017 Jan 1;6(1):1-3.
- Jové T, Da Re S, Tabesse A, Gassama-Sow A, Ploy MC. Gene expression in class 2 integrons is SOS-independent and involves two Pc promoters. Frontiers in microbiology. 2017 Aug 15;8:1499.
- Sahota, J.S., Smith, C.M., Radhakrishnan, P., Winstanley, C., Goderdzishvili, M., Chanishvili, N., Kadioglu, A., O'Callaghan, C. and Clokie, M.R.J., 2015. Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. Journal of aerosol medicine and pulmonary drug delivery, 28(5), pp.353-360.
- Bijelic A, Aureliano M, Rompel A. Polyoxometalates as potential next‐generation metallodrugs in the combat against cancer. Angewandte Chemie International Edition. 2019 Mar 4;58(10):2980-99.
- Nisa ZU, Akhtar T. para-aminobenzoic acid-A substrate of immense significance. Mini-Reviews in Organic Chemistry. 2020 Sep 1;17(6):686-700.
- Rosbottom I, Toroz D, Hammond RB, Roberts KJ. Conformational and structural stability of the single molecule and hydrogen bonded clusters of para aminobenzoic acid in the gas and solution phases. CrystEngComm. 2018;20(46):7543-55.
- Aspera SM, Arevalo RL, Nakanishi H, Kasai H, Sekine S, Kawai H. Vanadium doped polyoxometalate: induced active sites and increased hydrogen adsorption. Journal of Physics: Condensed Matter. 2020 Feb 13;32(19):195001.
- Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, Liu Z. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nature communications. 2018 Dec 21;9(1):5421.
- Schwarz G, Belaidi AA. Molybdenum in human health and disease. Interrelations between essential metal ions and human diseases. 2013:415-50.
- Novotny JA. Molybdenum nutriture in humans. Journal of Evidence-Based Complementary & Alternative Medicine. 2011 Oct;16(3):164-8.
- Domingo JL. Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biological trace element research. 2002 Aug;88:97-112.
- Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications. Sustainable Agriculture Reviews 35: Chitin and Chitosan: History, Fundamentals and Innovations. 2019:147-73.
- Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics. 2021 Feb 10;10(2):175.
The worldwide emergence of Carbapenem-resistant Pseudomonas aeruginosa has become a global threat to
public health, the clinical industry, the food industry, and the global economy as Carbapenm is the last resort drug for
Multi-drug resistant Pseudomonas aeruginosa [25, 28]. Pseudomonas aeruginosa is a gram-negative bacilli ubiquitously
found in nature that causes serious nosocomial infections increasing the severity of the health condition of hospitalized
patients and adding to morbidity and mortality. Recent studies have discovered the emergence of Metallo-beta-lactamase
genes in CRPA as a critical issue behind the rapid spread of CRPA strains internationally. Along with intrinsic
mechanisms, CRPA strains have been found to contain these MBL genes in mobile genetic elements with other antibiotic-
resistant genes, exacerbating the situation [3, 5, 29-31, 37, 38, 49]. In this study selected studies have been discussed that have been
published in the last ten years in India to understand the epidemiological situation of our country on the significance of
MBL genes in CRPA emergence. Furthermore, the impact of it on a global scale can also be delineated. It not only helps to
understand the issues in-depth but also, to address the current approaches by which the resistance can be avoided without
the constant need for another novel antibiotic. Antibiotic dosage abuse is another crucial factor in the MDRPA emergence
[34]. There are multiple novel approaches being studied around the world. Chitosan-encapsulated POMs
(Polyoxometalates) are one such solution that shows very promising potential. It is also a cheaper, easily produced,
malleable, and bio-sustainable option than other available nanoparticle therapies. This nano-system can work as a suitable
drug delivery system for Carbapenem by releasing the desired drug in a dose-dependent manner as well as containing self-
antibacterial activity itself, efficient to combat both intrinsic and extrinsic resistance mechanisms in CRPA. Additionally,
it can show efficiency in breaking the biofilm barrier created by many CRPA strains as an additional resistance
mechanism [27, 41, 43]. The efficiency of the tiny drug carriers can be enhanced many times by immobilizing phage-encoded
Tail Spike Proteins on them. This can confirm a targeted delivery of Carbapenem to treat MDRPA and reduce the chances
of further emergence of CRPA strains [65, 66, 67]. This review article focuses on the potential of this newer approach to solve
the ongoing CRPA issue.
Keywords :
Carbapenem-Resistant Pseudomonas aeruginosa; Metallo-Beta-Lactamase; Phage Therapy; Chitosan Polyoxomolybdate. Phage-Encoded Tail Spike Proteins.