Sirtuins and the Twelve Hallmarks of Ageing: A Framework for Understanding Ageing Processes and Targeted Intervention


Authors : Stella Elyse Lim

Volume/Issue : Volume 9 - 2024, Issue 5 - May

Google Scholar : https://tinyurl.com/5byjwpts

Scribd : https://tinyurl.com/5yzkjtsp

DOI : https://doi.org/10.38124/ijisrt/IJISRT24MAY2391

Abstract : Ageing is an innate phenomenon that has not been fully elucidated, despite increasing research on ageing in response to the worsening global ageing population. This demographic shift leads to profound ethical and social implications for human health, delineated by the twelve hallmarks of ageing. Sirtuins, a family of NAD+ - dependent enzymes, are key in the ageing process, thus have been more extensively studied in recent years. This review summarises the mechanisms and molecular pathways through which sirtuins modulate each hallmark of ageing and therefore influence ageing and the incidence of age-related illnesses. The mounting evidence of the close interaction between sirtuins and longevity pathways indicates sirtuins’ function as therapeutic targets for extending health span and life span. We further summarise interventions which target sirtuins to modulate age-related changes on the molecular, cellular, and systemic levels.

Keywords : Sirtuins, Ageing, Senescence, Age-Related Diseases, Hallmarks of Ageing, Longevity Pathways.

References :

  1. G. R. Boss and J. E. Seegmiller, ‘Age-related physiological changes and their clinical significance’, West. J. Med., vol. 135, no. 6, pp. 434–440, Dec. 1981.
  2. P. F. L. Da Silva and B. Schumacher, ‘Principles of the Molecular and Cellular Mechanisms of Aging’, J. Invest. Dermatol., vol. 141, no. 4, pp. 951–960, Apr. 2021, doi: 10.1016/j.jid.2020.11.018.
  3. D.-D. Zhou et al., ‘Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases’, Oxid. Med. Cell. Longev., vol. 2021, p. 9932218, 2021, doi: 10.1155/2021/9932218.
  4. M. Kritsilis, S. V Rizou, P. N. Koutsoudaki, K. Evangelou, V. G. Gorgoulis, and D. Papadopoulos, ‘Ageing, Cellular Senescence and Neurodegenerative Disease’, Int. J. Mol. Sci., vol. 19, no. 10, p. 2937, Sep. 2018, doi: 10.3390/ijms19102937.
  5. A. A. Johnson, B. W. English, M. N. Shokhirev, D. A. Sinclair, and T. L. Cuellar, ‘Human age reversal: Fact or fiction?’, Aging Cell, vol. 21, no. 8, p. e13664, Aug. 2022, doi: 10.1111/acel.13664.
  6. ‘Does the distinction between biological and chronological age support legal age change?’ Accessed: Nov. 12, 2023. [Online]. Available: https://bioethics.hms.harvard.edu/journal/legal-age-change
  7. R. Jansen et al., ‘An integrative study of five biological clocks in somatic and mental health’, eLife, vol. 10, p. e59479, doi: 10.7554/eLife.59479.
  8. C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, ‘The hallmarks of aging’, Cell, vol. 153, no. 6, pp. 1194–1217, Jun. 2013, doi: 10.1016/j.cell.2013.05.039.
  9. C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, ‘Hallmarks of aging: An expanding universe’, Cell, vol. 186, no. 2, pp. 243–278, Jan. 2023, doi: 10.1016/j.cell.2022.11.001.
  10. F.-F. Cheng, Y.-L. Liu, J. Du, and J.-T. Lin, ‘Metformin’s Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease’, Aging Dis., vol. 13, no. 4, pp. 970–986, Jul. 2022, doi: 10.14336/AD.2021.1213.
  11. A. Bareja, D. E. Lee, and J. P. White, ‘Maximizing Longevity and Healthspan: Multiple Approaches All Converging on Autophagy’, Front. Cell Dev. Biol., vol. 7, p. 183, 2019, doi: 10.3389/fcell.2019.00183.
  12. S. Michan and D. Sinclair, ‘Sirtuins in mammals: insights into their biological function’, Biochem. J., vol. 404, no. 1, pp. 1–13, May 2007, doi: 10.1042/BJ20070140.
  13. J. Rine, J. N. Strathern, J. B. Hicks, and I. Herskowitz, ‘A Suppressor of Mating-Type Locus Mutations in Saccharomyces cerevisiae: Evidence for and Identification of Cryptic Mating-Type Loci’, vol. 93, no. 4, pp. 7–901, Dec. 1979, doi: https://doi.org/10.1093/genetics/93.4.877.
  14. M. Watroba and D. Szukiewicz, ‘Sirtuins at the Service of Healthy Longevity’, Front. Physiol., vol. 12, p. 724506, 2021, doi: 10.3389/fphys.2021.724506.
  15. ‘Sirtuin Signaling Pathway - Creative Diagnostics’. Accessed: Jun. 22, 2023. [Online]. Available: https://www.creative-diagnostics.com/sirtuin-signaling-pathway.htm
  16. L. Fortuny and C. Sebastián, ‘Sirtuins as Metabolic Regulators of Immune Cells Phenotype and Function’, Genes, vol. 12, no. 11, p. 1698, Oct. 2021, doi: 10.3390/genes12111698.
  17. N. Xie et al., ‘NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential’, Signal Transduct. Target. Ther., vol. 5, no. 1, p. 227, Oct. 2020, doi: 10.1038/s41392-020-00311-7.
  18. H. Jęśko, P. Wencel, R. P. Strosznajder, and J. B. Strosznajder, ‘Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders’, Neurochem. Res., vol. 42, no. 3, pp. 876–890, Mar. 2017, doi: 10.1007/s11064-016-2110-y.
  19. Y. Wang et al., ‘An overview of Sirtuins as potential therapeutic target: Structure, function and modulators’, Eur. J. Med. Chem., vol. 161, pp. 48–77, Jan. 2019, doi: 10.1016/j.ejmech.2018.10.028.
  20. M. Wang and H. Lin, ‘Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation’, Annu. Rev. Biochem., vol. 90, pp. 245–285, Jun. 2021, doi: 10.1146/annurev-biochem-082520-125411.
  21. J. L. Nielsen, D. Bakula, and M. Scheibye-Knudsen, ‘Clinical Trials Targeting Aging’, Front. Aging, vol. 3, p. 820215, Feb. 2022, doi: 10.3389/fragi.2022.820215.
  22. J. M. Pezzuto, ‘Resveratrol: Twenty Years of Growth, Development and Controversy’, Biomol. Ther., vol. 27, no. 1, pp. 1–14, Jan. 2019, doi: 10.4062/biomolther.2018.176.
  23. Z. Min, J. Gao, and Y. Yu, ‘The Roles of Mitochondrial SIRT4 in Cellular Metabolism’, Front. Endocrinol., vol. 9, p. 783, 2018, doi: 10.3389/fendo.2018.00783.
  24. A. Vaquero, M. Scher, H. Erdjument-Bromage, P. Tempst, L. Serrano, and D. Reinberg, ‘SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation’, Nature, vol. 450, no. 7168, pp. 440–444, Nov. 2007, doi: 10.1038/nature06268.
  25. W. L. Johnson et al., ‘RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin’, eLife, vol. 6, p. e25299, Aug. 2017, doi: 10.7554/eLife.25299.
  26. M. C. Motta et al., ‘Mammalian SIRT1 Represses Forkhead Transcription Factors’, Cell, vol. 116, no. 4, pp. 551–563, Feb. 2004, doi: 10.1016/S0092-8674(04)00126-6.
  27. J. Jeong et al., ‘SIRT1 promotes DNA repair activity and deacetylation of Ku70’, Exp. Mol. Med., vol. 39, no. 1, pp. 8–13, Feb. 2007, doi: 10.1038/emm.2007.2.
  28. P. Ziętara, M. Dziewięcka, and M. Augustyniak, ‘Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future’, Int. J. Mol. Sci., vol. 24, no. 1, p. 728, Dec. 2022, doi: 10.3390/ijms24010728.
  29. L. Bosch-Presegué et al., ‘Stabilization of Suv39H1 by SirT1 Is Part of Oxidative Stress Response and Ensures Genome Protection’, Mol. Cell, vol. 42, no. 2, pp. 210–223, Apr. 2011, doi: 10.1016/j.molcel.2011.02.034.
  30. L. Serrano et al., ‘The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation’, Genes Dev., vol. 27, no. 6, pp. 639–653, Mar. 2013, doi: 10.1101/gad.211342.112.
  31. W. Jiang et al., ‘Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5 Ubiquitin Ligase’, Mol. Cell, vol. 43, no. 1, pp. 33–44, Jul. 2011, doi: 10.1016/j.molcel.2011.04.028.
  32. R. H. Skoge, C. Dölle, and M. Ziegler, ‘Regulation of SIRT2-dependent α-tubulin deacetylation by cellular NAD levels’, DNA Repair, vol. 23, pp. 33–38, Nov. 2014, doi: 10.1016/j.dnarep.2014.04.011.
  33. Z. Diao et al., ‘SIRT3 consolidates heterochromatin and counteracts senescence’, Nucleic Acids Res., vol. 49, no. 8, pp. 4203–4219, May 2021, doi: 10.1093/nar/gkab161.
  34. A. E. Kane and D. A. Sinclair, ‘Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases’, Circ. Res., vol. 123, no. 7, pp. 868–885, Sep. 2018, doi: 10.1161/CIRCRESAHA.118.312498.
  35. A. Vilà-Brau, A. L. De Sousa-Coelho, C. Mayordomo, D. Haro, and P. F. Marrero, ‘Human HMGCS2 Regulates Mitochondrial Fatty Acid Oxidation and FGF21 Expression in HepG2 Cell Line’, J. Biol. Chem., vol. 286, no. 23, pp. 20423–20430, Jun. 2011, doi: 10.1074/jbc.M111.235044.
  36. Q.-J. Wu et al., ‘The sirtuin family in health and disease’, Signal Transduct. Target. Ther., vol. 7, no. 1, p. 402, Dec. 2022, doi: 10.1038/s41392-022-01257-8.
  37. G. Laurent et al., ‘SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase’, Mol. Cell, vol. 50, no. 5, pp. 686–698, Jun. 2013, doi: 10.1016/j.molcel.2013.05.012.
  38. M. Tan et al., ‘Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5’, Cell Metab., vol. 19, no. 4, pp. 605–617, Apr. 2014, doi: 10.1016/j.cmet.2014.03.014.
  39. Z.-F. Lin et al., ‘SIRT5 desuccinylates and activates SOD1 to eliminate ROS’, Biochem. Biophys. Res. Commun., vol. 441, no. 1, pp. 191–195, Nov. 2013, doi: 10.1016/j.bbrc.2013.10.033.
  40. E. Michishita et al., ‘SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin’, Nature, vol. 452, no. 7186, pp. 492–496, Mar. 2008, doi: 10.1038/nature06736.
  41. E. Michishita et al., ‘Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6’, Cell Cycle, vol. 8, no. 16, pp. 2664–2666, Aug. 2009, doi: 10.4161/cc.8.16.9367.
  42. Z. Mao et al., ‘SIRT6 promotes DNA repair under stress by activating PARP1’, Science, vol. 332, no. 6036, pp. 1443–1446, Jun. 2011, doi: 10.1126/science.1202723.
  43. B. N. Vazquez et al., ‘SIRT7 promotes genome integrity and modulates nonhomologous end joining DNA repair’, EMBO J., vol. 35, no. 14, pp. 1488–1503, Jul. 2016, doi: 10.15252/embj.201593499.
  44. L. Onn et al., ‘SIRT6 is a DNA double-strand break sensor’, eLife, vol. 9, p. e51636, Jan. 2020, doi: 10.7554/eLife.51636.
  45. A. Sharma et al., ‘The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells’, J. Biol. Chem., vol. 288, no. 25, pp. 18439–18447, Jun. 2013, doi: 10.1074/jbc.M112.405928.
  46. A. Gámez-García and B. N. Vazquez, ‘Nuclear Sirtuins and the Aging of the Immune System’, Genes, vol. 12, no. 12, p. 1856, Nov. 2021, doi: 10.3390/genes12121856.
  47. J.-P. Etchegaray et al., ‘The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine’, Nat. Cell Biol., vol. 17, no. 5, pp. 545–557, May 2015, doi: 10.1038/ncb3147.
  48. P. Kumari, S. Tarighi, T. Braun, and A. Ianni, ‘SIRT7 Acts as a Guardian of Cellular Integrity by Controlling Nucleolar and Extra-Nucleolar Functions’, Genes, vol. 12, no. 9, p. 1361, Aug. 2021, doi: 10.3390/genes12091361.
  49. M. F. Barber et al., ‘SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation’, Nature, vol. 487, no. 7405, pp. 114–118, Jul. 2012, doi: 10.1038/nature11043.
  50. M. R. McReynolds, K. Chellappa, and J. A. Baur, ‘Age-related NAD+ decline’, Exp. Gerontol., vol. 134, p. 110888, Feb. 2020, doi: 10.1016/j.exger.2020.110888.
  51. T. Chavakis, ‘Immunometabolism: Where Immunology and Metabolism Meet’, J. Innate Immun., vol. 14, no. 1, pp. 1–3, 2022, doi: 10.1159/000521305.
  52. L. Zhao et al., ‘Sirtuins and their Biological Relevance in Aging and Age-Related Diseases’, Aging Dis., vol. 11, no. 4, pp. 927–945, Jul. 2020, doi: 10.14336/AD.2019.0820.
  53. S. Imai and L. Guarente, ‘It takes two to tango: NAD+ and sirtuins in aging/longevity control’, Npj Aging Mech. Dis., vol. 2, no. 1, p. 16017, Aug. 2016, doi: 10.1038/npjamd.2016.17.
  54. Y. Li and T. O. Tollefsbol, ‘Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases’, Epigenomics, vol. 8, no. 12, pp. 1637–1651, Dec. 2016, doi: 10.2217/epi-2016-0078.
  55. A. E. Teschendorff, J. West, and S. Beck, ‘Age-associated epigenetic drift: implications, and a case of epigenetic thrift?’, Hum. Mol. Genet., vol. 22, no. R1, pp. R7–R15, Oct. 2013, doi: 10.1093/hmg/ddt375.
  56. G. Hannum et al., ‘Genome-wide methylation profiles reveal quantitative views of human aging rates’, Mol. Cell, vol. 49, no. 2, pp. 359–367, Jan. 2013, doi: 10.1016/j.molcel.2012.10.016.
  57. M. Ehrlich, ‘DNA methylation in cancer: too much, but also too little’, Oncogene, vol. 21, no. 35, pp. 5400–5413, Aug. 2002, doi: 10.1038/sj.onc.1205651.
  58. A.-M. Galow and S. Peleg, ‘How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span’, Cells, vol. 11, no. 3, p. 468, Jan. 2022, doi: 10.3390/cells11030468.
  59. V. Carafa et al., ‘Sirtuin functions and modulation: from chemistry to the clinic’, Clin. Epigenetics, vol. 8, no. 1, p. 61, Dec. 2016, doi: 10.1186/s13148-016-0224-3.
  60. H. Jing and H. Lin, ‘Sirtuins in epigenetic regulation’, Chem. Rev., vol. 115, no. 6, pp. 2350–2375, Mar. 2015, doi: 10.1021/cr500457h.
  61. T. Senawong, V. J. Peterson, and M. Leid, ‘BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression’, Arch. Biochem. Biophys., vol. 434, no. 2, pp. 316–325, Feb. 2005, doi: 10.1016/j.abb.2004.10.028.
  62. G. Gerlitz, ‘The Emerging Roles of Heterochromatin in Cell Migration’, Front. Cell Dev. Biol., vol. 8, p. 394, May 2020, doi: 10.3389/fcell.2020.00394.
  63. P. K. Bautista-Niño, E. Portilla-Fernandez, D. E. Vaughan, A. H. J. Danser, and A. J. M. Roks, ‘DNA Damage: A Main Determinant of Vascular Aging’, Int. J. Mol. Sci., vol. 17, no. 5, p. 748, May 2016, doi: 10.3390/ijms17050748.
  64. M. Bonora, S. Missiroli, M. Perrone, F. Fiorica, P. Pinton, and C. Giorgi, ‘Mitochondrial Control of Genomic Instability in Cancer’, Cancers, vol. 13, no. 8, p. 1914, Apr. 2021, doi: 10.3390/cancers13081914.
  65. J. Guo et al., ‘Aging and aging-related diseases: from molecular mechanisms to interventions and treatments’, Signal Transduct. Target. Ther., vol. 7, no. 1, p. 391, Dec. 2022, doi: 10.1038/s41392-022-01251-0.
  66. A. Tubbs and A. Nussenzweig, ‘Endogenous DNA Damage as a Source of Genomic Instability in Cancer’, Cell, vol. 168, no. 4, pp. 644–656, Feb. 2017, doi: 10.1016/j.cell.2017.01.002.
  67. ‘DNA Damage and Types of Mutation’. Accessed: Oct. 18, 2023. [Online]. Available: https://biotecharticles.com/DNA-Article/DNA-Damage-and-Types-of-Mutation-835.html
  68. N. Chatterjee and G. C. Walker, ‘Mechanisms of DNA damage, repair, and mutagenesis’, Environ. Mol. Mutagen., vol. 58, no. 5, pp. 235–263, Jun. 2017, doi: 10.1002/em.22087.
  69. R. Huang and P.-K. Zhou, ‘DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy’, Signal Transduct. Target. Ther., vol. 6, no. 1, p. 254, Jul. 2021, doi: 10.1038/s41392-021-00648-7.
  70. R. V. Lloyd et al., ‘p27kip1: A Multifunctional Cyclin-Dependent Kinase Inhibitor with Prognostic Significance in Human Cancers’, Am. J. Pathol., vol. 154, no. 2, pp. 313–323, Feb. 1999, doi: 10.1016/S0002-9440(10)65277-7.
  71. M. Cuadrado, P. Gutierrez-Martinez, A. Swat, A. R. Nebreda, and O. Fernandez-Capetillo, ‘p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage’, Cancer Res., vol. 69, no. 22, pp. 8726–8732, Nov. 2009, doi: 10.1158/0008-5472.CAN-09-0729.
  72. P. J. Fernandez-Marcos and M. Serrano, ‘Sirt4: The Glutamine Gatekeeper’, Cancer Cell, vol. 23, no. 4, pp. 427–428, Apr. 2013, doi: 10.1016/j.ccr.2013.04.003.
  73. A. Chalkiadaki and L. Guarente, ‘The multifaceted functions of sirtuins in cancer’, Nat. Rev. Cancer, vol. 15, no. 10, pp. 608–624, Oct. 2015, doi: 10.1038/nrc3985.
  74. S. Paredes et al., ‘The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability’, J. Biol. Chem., vol. 293, no. 28, pp. 11242–11250, Jul. 2018, doi: 10.1074/jbc.AC118.003325.
  75. A. Ianni, S. Hoelper, M. Krueger, T. Braun, and E. Bober, ‘Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1’, Biochem. Biophys. Res. Commun., vol. 492, no. 3, pp. 434–440, Oct. 2017, doi: 10.1016/j.bbrc.2017.08.081.
  76. F. A. Lagunas-Rangel, ‘SIRT7 in the aging process’, Cell. Mol. Life Sci., vol. 79, no. 6, p. 297, Jun. 2022, doi: 10.1007/s00018-022-04342-x.
  77. S. Wu et al., ‘Telomerase RNA TERC and the PI3K-AKT pathway form a positive feedback loop to regulate cell proliferation independent of telomerase activity’, Nucleic Acids Res., vol. 50, no. 7, pp. 3764–3776, Apr. 2022, doi: 10.1093/nar/gkac179.
  78. M. A. Shammas, ‘Telomeres, lifestyle, cancer, and aging’, Curr. Opin. Clin. Nutr. Metab. Care, vol. 14, no. 1, pp. 28–34, Jan. 2011, doi: 10.1097/MCO.0b013e32834121b1.
  79. K. Takubo et al., ‘Telomere Shortening With Aging in Human Liver’, J. Gerontol. A. Biol. Sci. Med. Sci., vol. 55, no. 11, pp. B533–B536, Nov. 2000, doi: 10.1093/gerona/55.11.B533.
  80. A. S. Kulkarni, S. Gubbi, and N. Barzilai, ‘Benefits of Metformin in Attenuating the Hallmarks of Aging’, Cell Metab., vol. 32, no. 1, pp. 15–30, Jul. 2020, doi: 10.1016/j.cmet.2020.04.001.
  81. G. V. Raghuram and P. K. Mishra, ‘Stress induced premature senescence: a new culprit in ovarian tumorigenesis?’, Indian J. Med. Res., vol. 140 Suppl, no. Suppl 1, pp. S120-129, Nov. 2014.
  82. H. Amano and E. Sahin, ‘Telomeres and sirtuins: at the end we meet again’, Mol. Cell. Oncol., vol. 6, no. 5, p. e1632613, Sep. 2019, doi: 10.1080/23723556.2019.1632613.
  83. J. A. Palacios, D. Herranz, M. L. De Bonis, S. Velasco, M. Serrano, and M. A. Blasco, ‘SIRT1 contributes to telomere maintenance and augments global homologous recombination’, J. Cell Biol., vol. 191, no. 7, pp. 1299–1313, Dec. 2010, doi: 10.1083/jcb.201005160.
  84. X. Li et al., ‘SIRT6 in Senescence and Aging-Related Cardiovascular Diseases’, Front. Cell Dev. Biol., vol. 9, p. 641315, Mar. 2021, doi: 10.3389/fcell.2021.641315.
  85. C. L. Klaips, G. G. Jayaraj, and F. U. Hartl, ‘Pathways of cellular proteostasis in aging and disease’, J. Cell Biol., vol. 217, no. 1, pp. 51–63, Jan. 2018, doi: 10.1083/jcb.201709072.
  86. T. Sinnige, A. Yu, and R. I. Morimoto, ‘Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease’, Adv. Exp. Med. Biol., vol. 1243, pp. 53–68, 2020, doi: 10.1007/978-3-030-40204-4_4.
  87. I. S. Pyo, S. Yun, Y. E. Yoon, J.-W. Choi, and S.-J. Lee, ‘Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases’, Molecules, vol. 25, no. 20, p. 4649, Oct. 2020, doi: 10.3390/molecules25204649.
  88. E. Morselli et al., ‘Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy’, Cell Death Dis., vol. 1, no. 1, p. e10, 2010, doi: 10.1038/cddis.2009.8.
  89. Y. Aman et al., ‘Autophagy in healthy aging and disease’, Nat. Aging, vol. 1, no. 8, pp. 634–650, Aug. 2021, doi: 10.1038/s43587-021-00098-4.
  90. M. M. Lipinski et al., ‘Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease’, Proc. Natl. Acad. Sci., vol. 107, no. 32, pp. 14164–14169, Aug. 2010, doi: 10.1073/pnas.1009485107.
  91. M. Santra, K. A. Dill, and A. M. R. De Graff, ‘Proteostasis collapse is a driver of cell aging and death’, Proc. Natl. Acad. Sci., vol. 116, no. 44, pp. 22173–22178, Oct. 2019, doi: 10.1073/pnas.1906592116.
  92. K. K. M. Fernando and Y. S. Wijayasinghe, ‘Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer’s Disease’, Front. Cell. Neurosci., vol. 15, p. 746631, Sep. 2021, doi: 10.3389/fncel.2021.746631.
  93. S. Kume et al., ‘Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney’, J. Clin. Invest., vol. 120, no. 4, pp. 1043–1055, Apr. 2010, doi: 10.1172/JCI41376.
  94. G. Kroemer, G. Mariño, and B. Levine, ‘Autophagy and the integrated stress response’, Mol. Cell, vol. 40, no. 2, pp. 280–293, Oct. 2010, doi: 10.1016/j.molcel.2010.09.023.
  95. Y. Feng et al., ‘Interplay of energy metabolism and autophagy’, Autophagy, vol. 20, no. 1, pp. 4–14, Jan. 2024, doi: 10.1080/15548627.2023.2247300.
  96. T. S. Kim et al., ‘SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions’, Autophagy, vol. 15, no. 8, pp. 1356–1375, Aug. 2019, doi: 10.1080/15548627.2019.1582743.
  97. T. Zhang, J. Liu, S. Shen, Q. Tong, X. Ma, and L. Lin, ‘SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity’, Cell Death Differ., vol. 27, no. 1, pp. 329–344, Jan. 2020, doi: 10.1038/s41418-019-0356-z.
  98. B. C. Gilmour, L. H. Bergersen, and E. F. Fang, ‘Molecular, Cellular, and Metabolic Fundamentals of Human Aging’, in Molecular, Cellular, vol. Metabolic Fundamentals of Human Aging, 2023, p. 225.
  99. A. Efeyan, W. C. Comb, and D. M. Sabatini, ‘Nutrient-sensing mechanisms and pathways’, Nature, vol. 517, no. 7534, pp. 302–310, Jan. 2015, doi: 10.1038/nature14190.
  100. T. Yoshida and P. Delafontaine, ‘Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy’, Cells, vol. 9, no. 9, p. 1970, Aug. 2020, doi: 10.3390/cells9091970.
  101. E. L. Greer, M. R. Banko, and A. Brunet, ‘AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity’, Ann. N. Y. Acad. Sci., vol. 1170, pp. 688–692, Jul. 2009, doi: 10.1111/j.1749-6632.2009.04019.x.
  102. Z. Feng and A. J. Levine, ‘The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein’, Trends Cell Biol., vol. 20, no. 7, pp. 427–434, Jul. 2010, doi: 10.1016/j.tcb.2010.03.004.
  103. V. Panwar et al., ‘Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease’, Signal Transduct. Target. Ther., vol. 8, no. 1, p. 375, Oct. 2023, doi: 10.1038/s41392-023-01608-z.
  104. S. C. Johnson, P. S. Rabinovitch, and M. Kaeberlein, ‘mTOR is a key modulator of ageing and age-related disease’, Nature, vol. 493, no. 7432, pp. 338–345, Jan. 2013, doi: 10.1038/nature11861.
  105. M. Laplante and D. M. Sabatini, ‘mTOR signaling in growth control and disease’, Cell, vol. 149, no. 2, pp. 274–293, Apr. 2012, doi: 10.1016/j.cell.2012.03.017.
  106. M. Laplante and D. M. Sabatini, ‘mTOR signaling at a glance’, J. Cell Sci., vol. 122, no. Pt 20, pp. 3589–3594, Oct. 2009, doi: 10.1242/jcs.051011.
  107. S. Alers, A. S. Löffler, S. Wesselborg, and B. Stork, ‘Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks’, Mol. Cell. Biol., vol. 32, no. 1, pp. 2–11, Jan. 2012, doi: 10.1128/MCB.06159-11.
  108. F. V. Lopez et al., ‘Frontal adenosine triphosphate markers from 31P MRS are associated with cognitive performance in healthy older adults: preliminary findings’, Front. Aging Neurosci., vol. 15, p. 1180994, Aug. 2023, doi: 10.3389/fnagi.2023.1180994.
  109. K. W. Chung and H. Y. Chung, ‘The Effects of Calorie Restriction on Autophagy: Role on Aging Intervention’, Nutrients, vol. 11, no. 12, p. 2923, Dec. 2019, doi: 10.3390/nu11122923.
  110. P. J. Fernandez-Marcos and J. Auwerx, ‘Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis’, Am. J. Clin. Nutr., vol. 93, no. 4, pp. 884S–90, Apr. 2011, doi: 10.3945/ajcn.110.001917.
  111. C. Zhu et al., ‘Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction’, Genet. Res., vol. 2022, p. 9282484, 2022, doi: 10.1155/2022/9282484.
  112. C. Giorgi et al., ‘Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases’, Int. Rev. Cell Mol. Biol., vol. 340, pp. 209–344, 2018, doi: 10.1016/bs.ircmb.2018.05.006.
  113. K. A. Anderson et al., ‘SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion’, Cell Metab., vol. 25, no. 4, pp. 838-855.e15, Apr. 2017, doi: 10.1016/j.cmet.2017.03.003.
  114. Y. Quan, Y. Xin, G. Tian, J. Zhou, and X. Liu, ‘Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging’, Oxid. Med. Cell. Longev., vol. 2020, p. 9423593, 2020, doi: 10.1155/2020/9423593.
  115. C. K. Singh, G. Chhabra, M. A. Ndiaye, L. M. Garcia-Peterson, N. J. Mack, and N. Ahmad, ‘The Role of Sirtuins in Antioxidant and Redox Signaling’, Antioxid. Redox Signal., vol. 28, no. 8, pp. 643–661, Mar. 2018, doi: 10.1089/ars.2017.7290.
  116. S. Kausar, F. Wang, and H. Cui, ‘The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases’, Cells, vol. 7, no. 12, p. 274, Dec. 2018, doi: 10.3390/cells7120274.
  117. A. Ungurianu, A. Zanfirescu, and D. Margină, ‘Sirtuins, resveratrol and the intertwining cellular pathways connecting them’, Ageing Res. Rev., vol. 88, p. 101936, Jul. 2023, doi: 10.1016/j.arr.2023.101936.
  118. J. L. Chiang et al., ‘Mitochondria in Ovarian Aging and Reproductive Longevity’, Ageing Res. Rev., vol. 63, p. 101168, Nov. 2020, doi: 10.1016/j.arr.2020.101168.
  119. S. Sameri, P. Samadi, R. Dehghan, E. Salem, N. Fayazi, and R. Amini, ‘Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review’, Curr. Stem Cell Res. Ther., vol. 15, no. 4, pp. 362–378, Jun. 2020, doi: 10.2174/1574888X15666200213105155.
  120. R. Ren, A. Ocampo, G.-H. Liu, and J. C. Izpisua Belmonte, ‘Regulation of Stem Cell Aging by Metabolism and Epigenetics’, Cell Metab., vol. 26, no. 3, pp. 460–474, Sep. 2017, doi: 10.1016/j.cmet.2017.07.019.
  121. J. Y. Lee and S.-H. Hong, ‘Hematopoietic Stem Cells and Their Roles in Tissue Regeneration’, Int. J. Stem Cells, vol. 13, no. 1, pp. 1–12, Mar. 2020, doi: 10.15283/ijsc19127.
  122. T. McNeely, M. Leone, H. Yanai, and I. Beerman, ‘DNA damage in aging, the stem cell perspective’, Hum. Genet., vol. 139, no. 3, pp. 309–331, Mar. 2020, doi: 10.1007/s00439-019-02047-z.
  123. A. Brunet, M. A. Goodell, and T. A. Rando, ‘Ageing and rejuvenation of tissue stem cells and their niches’, Nat. Rev. Mol. Cell Biol., vol. 24, no. 1, pp. 45–62, Jan. 2023, doi: 10.1038/s41580-022-00510-w.
  124. C. O’Callaghan and A. Vassilopoulos, ‘Sirtuins at the crossroads of stemness, aging, and cancer’, Aging Cell, vol. 16, no. 6, pp. 1208–1218, Dec. 2017, doi: 10.1111/acel.12685.
  125. M. C. Florian et al., ‘Cdc42 Activity Regulates Hematopoietic Stem Cell Aging and Rejuvenation’, Cell Stem Cell, vol. 10, no. 5, pp. 520–530, May 2012, doi: 10.1016/j.stem.2012.04.007.
  126. H. Chen et al., ‘SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin’, Front. Aging Neurosci., vol. 6, p. 103, 2014, doi: 10.3389/fnagi.2014.00103.
  127. R. A. Denu, ‘SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation’, Oxid. Med. Cell. Longev., vol. 2017, p. 5841716, 2017, doi: 10.1155/2017/5841716.
  128. A.-Y. Kim et al., ‘SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency’, Cell Death Dis., vol. 9, no. 9, p. 893, Aug. 2018, doi: 10.1038/s41419-018-0920-3.
  129. L. Chen et al., ‘Inflammatory responses and inflammation-associated diseases in organs’, Oncotarget, vol. 9, no. 6, pp. 7204–7218, Jan. 2018, doi: 10.18632/oncotarget.23208.
  130. Y. Yang et al., ‘Regulation of SIRT1 and Its Roles in Inflammation’, Front. Immunol., vol. 13, p. 831168, 2022, doi: 10.3389/fimmu.2022.831168.
  131. O. Pansarasa, M. C. Mimmi, A. Davin, M. Giannini, A. Guaita, and C. Cereda, ‘Inflammation and cell-to-cell communication, two related aspects in frailty’, Immun. Ageing A, vol. 19, no. 1, p. 49, Oct. 2022, doi: 10.1186/s12979-022-00306-8.
  132. D. Hasan, A. Shono, C. K. van Kalken, P. J. van der Spek, E. P. Krenning, and T. Kotani, ‘A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling’, Purinergic Signal., vol. 18, no. 1, pp. 13–59, Mar. 2022, doi: 10.1007/s11302-021-09814-6.
  133. D. C. Fajgenbaum and C. H. June, ‘Cytokine Storm’, N. Engl. J. Med., vol. 383, no. 23, pp. 2255–2273, Dec. 2020, doi: 10.1056/NEJMra2026131.
  134. D. Baylis, D. B. Bartlett, H. P. Patel, and H. C. Roberts, ‘Understanding how we age: insights into inflammaging’, Longev. Heal., vol. 2, no. 1, p. 8, Dec. 2013, doi: 10.1186/2046-2395-2-8.
  135. X. Zhu et al., ‘Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention’, Signal Transduct. Target. Ther., vol. 6, no. 1, p. 245, Jun. 2021, doi: 10.1038/s41392-021-00646-9.
  136. J. A. Fafián-Labora and A. O’Loghlen, ‘Classical and Nonclassical Intercellular Communication in Senescence and Ageing’, Trends Cell Biol., vol. 30, no. 8, pp. 628–639, Aug. 2020, doi: 10.1016/j.tcb.2020.05.003.
  137. A. Burford, ‘What Is Altered Intercellular Communication? - The Hallmarks Of Ageing Series’, Gowing Life. Accessed: Oct. 21, 2023. [Online]. Available: https://www.gowinglife.com/what-is-altered-intercellular-communication-the-hallmarks-of-ageing-series/
  138. M. Mittelbrunn and F. Sánchez-Madrid, ‘Intercellular communication: diverse structures for exchange of genetic information’, Nat. Rev. Mol. Cell Biol., vol. 13, no. 5, pp. 328–335, May 2012, doi: 10.1038/nrm3335.
  139. M. H. Park and J. T. Hong, ‘Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches’, Cells, vol. 5, no. 2, p. 15, Mar. 2016, doi: 10.3390/cells5020015.
  140. J. J. Baechle, N. Chen, P. Makhijani, S. Winer, D. Furman, and D. A. Winer, ‘Chronic inflammation and the hallmarks of aging’, Mol. Metab., vol. 74, p. 101755, Aug. 2023, doi: 10.1016/j.molmet.2023.101755.
  141. P. Chandramowlishwaran, A. Vijay, D. Abraham, G. Li, S. M. Mwangi, and S. Srinivasan, ‘Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System’, Front. Neurosci., vol. 14, p. 614331, Dec. 2020, doi: 10.3389/fnins.2020.614331.
  142. A. S. Wellman et al., ‘Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota’, Gastroenterology, vol. 153, no. 3, pp. 772–786, Sep. 2017, doi: 10.1053/j.gastro.2017.05.022.
  143. W. Grabowska, E. Sikora, and A. Bielak-Zmijewska, ‘Sirtuins, a promising target in slowing down the ageing process’, Biogerontology, vol. 18, no. 4, pp. 447–476, Aug. 2017, doi: 10.1007/s10522-017-9685-9.
  144. M. J. Uddin, M. Farjana, A. Moni, K. S. Hossain, M. A. Hannan, and H. Ha, ‘Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging’, Int. J. Mol. Sci., vol. 22, no. 15, p. 8258, Jul. 2021, doi: 10.3390/ijms22158258.
  145. S. Dodig, I. Čepelak, and I. Pavić, ‘Hallmarks of senescence and aging’, Biochem. Medica, vol. 29, no. 3, p. 030501, Oct. 2019, doi: 10.11613/BM.2019.030501.
  146. S.-H. Lee, J.-H. Lee, H.-Y. Lee, and K.-J. Min, ‘Sirtuin signaling in cellular senescence and aging’, BMB Rep., vol. 52, no. 1, pp. 24–34, Jan. 2019, doi: 10.5483/BMBRep.2019.52.1.290.
  147. J. Giroud, I. Bouriez, H. Paulus, A. Pourtier, F. Debacq-Chainiaux, and O. Pluquet, ‘Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment’, Int. J. Mol. Sci., vol. 24, no. 13, p. 10788, Jun. 2023, doi: 10.3390/ijms241310788.
  148. M. Mijit, V. Caracciolo, A. Melillo, F. Amicarelli, and A. Giordano, ‘Role of p53 in the Regulation of Cellular Senescence’, Biomolecules, vol. 10, no. 3, p. 420, Mar. 2020, doi: 10.3390/biom10030420.
  149. A. L. C. Ong and T. S. Ramasamy, ‘Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming’, Ageing Res. Rev., vol. 43, pp. 64–80, May 2018, doi: 10.1016/j.arr.2018.02.004.
  150. K. L. Lakpa, N. Khan, Z. Afghah, X. Chen, and J. D. Geiger, ‘Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance’, J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol., vol. 16, no. 2, pp. 219–237, Jun. 2021, doi: 10.1007/s11481-021-09990-7.
  151. F. Rodier et al., ‘DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion’, J. Cell Sci., vol. 124, no. 1, pp. 68–81, Jan. 2011, doi: 10.1242/jcs.071340.
  152. R. H. Houtkooper, E. Pirinen, and J. Auwerx, ‘Sirtuins as regulators of metabolism and healthspan’, Nat. Rev. Mol. Cell Biol., vol. 13, no. 4, pp. 225–238, Mar. 2012, doi: 10.1038/nrm3293.
  153. S. Michan, ‘Calorie restriction and NAD+/sirtuin counteract the hallmarks of aging’, Front. Biosci., vol. 19, no. 8, p. 1300, 2014, doi: 10.2741/4283.
  154. J. Sbierski-Kind et al., ‘Effects of caloric restriction on the gut microbiome are linked with immune senescence’, Microbiome, vol. 10, no. 1, p. 57, Dec. 2022, doi: 10.1186/s40168-022-01249-4.
  155. L. He et al., ‘Autophagy: The Last Defense against Cellular Nutritional Stress’, Adv. Nutr., vol. 9, no. 4, pp. 493–504, Jul. 2018, doi: 10.1093/advances/nmy011.
  156. K. Jia and B. Levine, ‘Autophagy is required for dietary restriction-mediated life span extension in C. elegans’, Autophagy, vol. 3, no. 6, pp. 597–599, 2007, doi: 10.4161/auto.4989.
  157. Y.-C. Ning et al., ‘Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage’, Mech. Ageing Dev., vol. 134, no. 11–12, pp. 570–579, Nov. 2013, doi: 10.1016/j.mad.2013.11.006.
  158. M. S. Bonkowski and D. A. Sinclair, ‘Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds’, Nat. Rev. Mol. Cell Biol., vol. 17, no. 11, pp. 679–690, Nov. 2016, doi: 10.1038/nrm.2016.93.
  159. L. Guarente, ‘Calorie restriction and sirtuins revisited’, Genes Dev., vol. 27, no. 19, pp. 2072–2085, Oct. 2013, doi: 10.1101/gad.227439.113.
  160. H. Kondoh and M. Kameda, ‘Metabolites in aging and aging‐relevant diseases: Frailty, sarcopenia and cognitive decline’, Geriatr. Gerontol. Int., p. ggi.14684, Oct. 2023, doi: 10.1111/ggi.14684.
  161. S.-I. Imai, ‘Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases’, Curr. Pharm. Des., vol. 15, no. 1, pp. 20–28, 2009, doi: 10.2174/138161209787185814.
  162. L. Sedlak, W. Wojnar, M. Zych, D. Wyględowska-Promieńska, E. Mrukwa-Kominek, and I. Kaczmarczyk-Sedlak, ‘Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes’, Nutrients, vol. 10, no. 10, p. 1423, Oct. 2018, doi: 10.3390/nu10101423.
  163. M. Gertz et al., ‘A molecular mechanism for direct sirtuin activation by resveratrol’, PloS One, vol. 7, no. 11, p. e49761, 2012, doi: 10.1371/journal.pone.0049761.
  164. X. Wang, N. L. Buechler, B. K. Yoza, C. E. McCall, and V. T. Vachharajani, ‘Resveratrol attenuates microvascular inflammation in sepsis via SIRT‐1‐Induced modulation of adhesion molecules in ob/ob mice’, Obesity, vol. 23, no. 6, pp. 1209–1217, Jun. 2015, doi: 10.1002/oby.21086.
  165. S.-X. Wu et al., ‘Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review’, Crit. Rev. Food Sci. Nutr., pp. 1–19, Jul. 2022, doi: 10.1080/10408398.2022.2101428.
  166. S. M. Marshall, ‘60 years of metformin use: a glance at the past and a look to the future’, Diabetologia, vol. 60, no. 9, pp. 1561–1565, Sep. 2017, doi: 10.1007/s00125-017-4343-y.
  167. R. Song, ‘Mechanism of Metformin: A Tale of Two Sites’, Diabetes Care, vol. 39, no. 2, pp. 187–189, Feb. 2016, doi: 10.2337/dci15-0013.
  168. E. Fontaine, ‘Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences’, Front. Endocrinol., vol. 9, p. 753, 2018, doi: 10.3389/fendo.2018.00753.
  169. D. W. Lamming, L. Ye, D. M. Sabatini, and J. A. Baur, ‘Rapalogs and mTOR inhibitors as anti-aging therapeutics’, J. Clin. Invest., vol. 123, no. 3, pp. 980–989, Mar. 2013, doi: 10.1172/JCI64099.
  170. M. Cristina Cruz et al., ‘Rapamycin and Less Immunosuppressive Analogs Are Toxic to Candida albicans and Cryptococcus neoformans via FKBP12-Dependent Inhibition of TOR’, Am. Soc. Microbiol., vol. 45, no. 11, pp. 3162–3170, Nov. 2001, doi: 10.1128/AAC.45.11.3162-3170.2001.
  171. M. V. Blagosklonny, ‘Towards disease-oriented dosing of rapamycin for longevity: does aging exist or only age-related diseases?’, Aging, vol. 15, no. 14, pp. 6632–6640, Jul. 2023, doi: 10.18632/aging.204920.
  172. B. Seto, ‘Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer’, Clin. Transl. Med., vol. 1, no. 1, p. 29, Nov. 2012, doi: 10.1186/2001-1326-1-29.
  173. R. Wang et al., ‘Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism’, Aging Cell, vol. 16, no. 3, pp. 564–574, Jun. 2017, doi: 10.1111/acel.12587.
  174. A. Salminen, K. Kaarniranta, and A. Kauppinen, ‘Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases’, Inflamm. Res., vol. 70, no. 10–12, pp. 1043–1061, Dec. 2021, doi: 10.1007/s00011-021-01498-3.
  175. D. Ehninger, F. Neff, and K. Xie, ‘Longevity, aging and rapamycin’, Cell. Mol. Life Sci. CMLS, vol. 71, no. 22, pp. 4325–4346, Nov. 2014, doi: 10.1007/s00018-014-1677-1.
  176. F. Shrosbery, W. Czechtizky, L. Donnelly, and P. Barnes, ‘Rapamycin reduces oxidative stress-induced senescence by increasing sirtuin-1 in small airway epithelial cells’, in Mechanisms of lung injury and repair, European Respiratory Society, Sep. 2023, p. PA566. doi: 10.1183/13993003.congress-2023.PA566.

177. S. Zhang et al., ‘SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence’, Mech. Ageing Dev., vol. 133, no. 6, pp. 387–400, Jun. 2012, doi: 10.1016/j.mad.2012.04.005

Ageing is an innate phenomenon that has not been fully elucidated, despite increasing research on ageing in response to the worsening global ageing population. This demographic shift leads to profound ethical and social implications for human health, delineated by the twelve hallmarks of ageing. Sirtuins, a family of NAD+ - dependent enzymes, are key in the ageing process, thus have been more extensively studied in recent years. This review summarises the mechanisms and molecular pathways through which sirtuins modulate each hallmark of ageing and therefore influence ageing and the incidence of age-related illnesses. The mounting evidence of the close interaction between sirtuins and longevity pathways indicates sirtuins’ function as therapeutic targets for extending health span and life span. We further summarise interventions which target sirtuins to modulate age-related changes on the molecular, cellular, and systemic levels.

Keywords : Sirtuins, Ageing, Senescence, Age-Related Diseases, Hallmarks of Ageing, Longevity Pathways.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe