Authors :
Sunil Kumar
Volume/Issue :
Volume 10 - 2025, Issue 12 - December
Google Scholar :
https://tinyurl.com/5hfnjstn
Scribd :
https://tinyurl.com/yc8dbrrj
DOI :
https://doi.org/10.38124/ijisrt/25dec1322
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Differential Scanning Calorimetry (DSC) has been used as to investigate the specific temperatures of glassy Se90-
xTe5Sn5Inx (0≤x≤9) alloys in the crystallization region at various heating rates under non-isothermal conditions. This study
examines specific heats of glassy Se-Te-Sn-In network for crystallization region. The observed specific heats Cpl (before) Cpa
(after) and ΔCpc (difference of Cpa and Cpl), for crystallization region were carried out. The study also explored the
composition-dependent of glassy Se-Te-Sn-In system, variability with different concentrations of In. All specific heats change
with different Indium concentrations, and most at a composition of 9 at.wt. % of In. The variations of specific heats have been
explained on the basis of atomic weights and room temperature values of Cp for the elements Se and In.
Keywords :
Specific Heat; Multi-Component Chalcogenide Network; Crystallization Temperature; Average Coordination Number; Differential Scanning Calorimetry (DSC).
References :
- Singh, K., Mehta, N., Sharma, S. K., & Kumar, A. (2016). Crystallization kinetics of glassy Se₉₀In₁₀₋xAgₓ alloys: Observation of Meyer–Neldel rule. Processing and Application of Ceramics, 10(3), 137–142.
- Zhang, X.-H., & Bellec, Y. (2003). Production of complex chalcogenide glass optics by molding for thermal imaging. Journal of Non-Crystalline Solids, 326, 519–523.
- Ravagli, A., Craig, C., Lincoln, J., & Hewak, D. W. (2017). Ga–La–S–Se glass for visible and thermal imaging. Advanced Optical Technologies, 6, 131–136.
- Saraswat, K., Pal, S. K., Khattari, Z. Y., Dahshan, A., & Mehta, N. (2024). A comprehensive study of radiation shielding parameters of chalcogen-rich quaternary alloys for nuclear waste management. Optical Materials, 157, 116253.
- Milochova, M., Kassem, M., & Bychkov, E. (2012). Chalcogenide glass chemical sensor for cadmium detection in industrial environment. ECS Transactions, 50, 357–362.
- Anjali, B., Patial, S., & Bhardwaj, S. (2017). On the AC conductivity mechanism in nano-crystalline Se₇₉₋xTe₁₅In₆Pbₓ alloys. Physica B: Condensed Matter, 523, 52–61.
- Chen, H., Ran, M., Wei, W., Wu, X., Lin, H., & Zhu, Q. (2022). A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coordination Chemistry Reviews, 470, 214706.
- Snopatin, G. E., Shiryaev, V. S., Plotichenko, V., Dianov, E., & Churbanov, M. F. (2009). High-purity chalcogenide glasses for fiber optics. Inorganic Materials, 45, 1439–1460.
- Šiljegović, M. V., Sekulić, D. S. L., Lukić-Petrović, S. R., & Petrović, D. (2016). Correlation between microstructure and electrical properties of Bi–As₂S₃ quasibinary chalcogenides using AC impedance spectroscopy. Journal of Materials Science: Materials in Electronics, 27, 1655–1661.
- Raoux, A. J. S., Welnic, W., & Ielmini, D. (2010). Phase-change materials and their application to nonvolatile memories. Chemical Reviews, 110, 240–267.
- Sedeek, K. K., Adam, A., Churbakov, L. M. F., Wahab, A., & Hafez, F. M. (2004). Dielectric relaxation in Ge₁₋xSe₂Pbₓ nano-crystalline systems. Materials Chemistry and Physics, 85, 20–26.
- Shoab, M., Aslam, Z., Ali, J., & Zulfequar, M. (2023). Crystallization kinetics and electrical properties of indium-incorporated Se–Te–Sb–In chalcogenide glasses. Journal of Materials Science: Materials in Electronics, 34, 1399.
- Abdel-Rahim, M. A. (1997). Calorimetric studies of glassy alloys in the Ge–Se–Te system. Physica B: Condensed Matter, 239, 238–242.
- Horie, M., Ohno, T., Nobukuni, N., Kioyo, K., & Hashizume, T. (2001). Optical disk system technologies. Technical Digest, ODS 2001, MC1, 37.
- Akiyama, T., Uno, M., Kitahara, H., Narumi, K., Nishiuchi, K., & Yamada, N. (2001). Rewritable dual-layer phase-change optical disk utilizing a blue-violet laser. Japanese Journal of Applied Physics, 40, 1598.
- Ohta, T. (2001). Phase-change optical memory promotes DVD optical disk. Journal of Optoelectronics and Advanced Materials, 3, 609.
- Kasap, S. O., Wagner, T., Aiyah, V., Krylouk, O., Bekirov, A., & Tichy, L. (1999). Thermal and mechanical properties of amorphous chalcogenide Se–Te–P semiconducting alloys. Journal of Materials Science, 34, 3779–3786.
- Twaddell, V. A., Lacourse, W. C., & Mackenzie, J. D. (1972). Impurity effects on the structure and electrical properties of non-crystalline selenium. Journal of Non-Crystalline Solids, 8–10, 83–90.
- Fernandes, B. J., Sridharan, K., Munga, P., Ramesh, K., & Udayashankar, N. K. (2016). Memory-type switching behavior of ternary Ge–Te–Sn chalcogenide compounds. Journal of Physics D: Applied Physics, 49, 295104.
- Nagels, P., Rotti, M., & Vikhrov, S. (1981). Doping of chalcogenide glasses in the Ge–Se and Ge–Te systems. Journal de Physique Colloques, 42, C4-907–C4-910.
- Singh, A. K. (2011). Effect of indium additive on heat capacities of Se–Zn–Te multicomponent chalcogenide glasses. Chalcogenide Letters, 8(2), 123–128.
- Singh, A. K. (2011). Effect of indium additive on the heat capacity of Se–Zn chalcogenide glasses. European Physical Journal: Applied Physics, 55, 11103.
- Sharma, A., Kumar, H., & Mehta, N. (2012). Determination of specific heat in Se–Te–Sn–Pb chalcogenide glasses using modulated DSC. Materials Letters, 86, 54–57.
- Kumar, S., & Singh, K. (2012). Glass transition, thermal stability, and glass-forming tendency of Se–Te–Sn–In chalcogenide glasses. Thermochimica Acta, 528, 32–37.
- Touloukian, Y. S. (1970). Thermophysical properties of matter: Volume 5 – Specific heat. New York: Plenum Press.
- Joraid, A. A., Abu-Sehly, A. A., Abu El-Oyoun, M., & Mohamed, A. H. (2013). Advanced kinetics modeling and modulated DSC of Se–Te–Sn glasses. Chalcogenide Letters, 10, 303–317.
- Tanaka, K. (1989). Structural phase transitions in chalcogenide glasses. Physical Review B, 39, 1270–1279.
- Thorpe, M. F. (1983). Continuous deformations in random networks. Journal of Non-Crystalline Solids, 57, 355–370.
- Eisenberg, A. (1963). Glass transition temperatures in amorphous selenium. Polymer Letters, 1, 177–179.
Differential Scanning Calorimetry (DSC) has been used as to investigate the specific temperatures of glassy Se90-
xTe5Sn5Inx (0≤x≤9) alloys in the crystallization region at various heating rates under non-isothermal conditions. This study
examines specific heats of glassy Se-Te-Sn-In network for crystallization region. The observed specific heats Cpl (before) Cpa
(after) and ΔCpc (difference of Cpa and Cpl), for crystallization region were carried out. The study also explored the
composition-dependent of glassy Se-Te-Sn-In system, variability with different concentrations of In. All specific heats change
with different Indium concentrations, and most at a composition of 9 at.wt. % of In. The variations of specific heats have been
explained on the basis of atomic weights and room temperature values of Cp for the elements Se and In.
Keywords :
Specific Heat; Multi-Component Chalcogenide Network; Crystallization Temperature; Average Coordination Number; Differential Scanning Calorimetry (DSC).