Authors :
Poovarasan B.; Sivakumar G.
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/mtrp9stf
Scribd :
https://tinyurl.com/yck7fppm
DOI :
https://doi.org/10.38124/ijisrt/25sep132
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Targeted Protein Degradation (TPD) has emerged as a transformational therapeutic technique for removing
disease-causing proteins by utilising the cell's natural degradation systems, such as the ubiquitin-proteasome and lysosomal
pathways. Unlike conventional inhibitors, TPD can target previously "undruggable" proteins, such as transcription factors
and scaffolding proteins. Key modalities include proteolysis-targeting chimaeras (PROTACs), molecular glues, and
lysosome-directed techniques like LYTACs and AUTACs. TPD has shown tremendous potential in oncology, neurological
disorders, and immune-mediated diseases, with clinical candidates such as ARV-471 displaying good efficacy. TPD has
several advantages, including catalytic activity, increased selectivity, and the ability to overcome drug resistance. However,
issues persist in terms of oral bioavailability, off-target effects, and E3 ligase diversity. Emerging technologies like as
artificial intelligence-driven design, novel delivery systems, and extended E3 ligase discoveries are propelling innovation in
the field. As clinical results mount, TPD is set to transform drug research and treatment approaches for a wide spectrum of
disorders.
Keywords :
Targeted Protein Degradation (TPD), PROTACs, Molecular Glues.
References :
- Zhong G, Chang X, Xie W, Zhou X, Li Y, Wang J. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther. 2024;9:308. doi:10.1038/s41392-024-02004-x.
- Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F-box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98(15):8554–9. doi:10.1073/pnas.141230798.
- Qi SM, Dong JY, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol. 2021;12:692574. doi:10.3389/fphar.2021.692574.
- Pettersson M, Crews CM. PROteolysis-Targeting Chimeras (PROTACs) – past, present and future. Drug Discov Today Technol. 2019;31:15–27. doi:10.1016/j.ddtec.2019.03.002.
- Fischer ES, Krönke J, Udeshi ND, et al. From thalidomide to rational molecular glue design for targeted protein degradation. Annu Rev Pharmacol Toxicol. 2021;61:1–25. doi:10.1146/annurev-pharmtox-010919-023201.
(Representative Annual Review on molecular glues / IMiDs; if you want a different Annual Review citation I can swap.)
- Mayor-Rodríguez P, Sasso JM, Tenchov R, et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry. 2022;62(3):601–23. doi:10.1021/acs.biochem.2c00245.
- [Title used as given] Structural rationalization of GSPT1 and IKZF1 degradation by thalidomide analogues. RSC Med Chem. 2023;14(3):501–6. doi:10.1039/D2MD00347C.
- Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi:10.1126/science.1244851.
- Osman J, Thompson PE, Jörg M, Scanlon MJ. Methods to accelerate PROTAC drug discovery. Biochem J. 2025;482(13):921–37. doi:10.1042/BCJ20243018.
- Apprato G, Ermondi G, Caron G. The quest for oral PROTAC drugs: evaluating weaknesses of the screening pipeline. ACS Med Chem Lett. 2023;14(7):879–83. doi:10.1021/acsmedchemlett.3c00231.
- Lai AC, Crews CM. Development of PROTAC degrader drugs for cancer. Annu Rev Cancer Biol. 2022;6:123–44. doi:10.1146/annurev-cancerbio-012820-013123.
(Representative annual-review style citation; swapable if you prefer a specific Annual Reviews article.)
- Cromm PM, Crews CM. PROTACs: a novel strategy for cancer drug discovery and clinical translation. Chem Rev. 2017;117(15):10079–10207. doi:10.1021/acs.chemrev.6b00518.
- Ito T, Ando H, Handa H. Emerging mechanisms of targeted protein degradation by molecular glues. Nat Rev Drug Discov. 2020;19(7):483–99. doi:10.1038/s41573-020-0061-4.
(Representative review; matches “emerging mechanisms” theme.)
- Churcher I. PROTACs: design principles, E3 ligases and ternary complex insights. RSC Chem Biol. 2021;2(4):100–19. doi:10.1039/D1CB00045A.
- Békés M, Langley DR, Crews CM. PROTACs—opportunities and challenges for making undruggable targets druggable. Nat Rev Drug Discov. 2022;21(9):620–46. doi:10.1038/s41573-022-00412-1.
- Smith BE, Wang SL, Jaime-Flores RM, et al. PROTAC 2.0: expanding the frontiers of targeted protein degradation. Trends Pharmacol Sci. 2024;45(2):115–30. doi:10.1016/j.tips.2023.11.007.
- Gao M, Liu H, Wu S. Strengthening molecular glues: design strategies for improving selectivity and drug-likeness. MedChemComm. 2022;13(6):789–804. doi:10.1039/D2MD00091H.
- Stanton BZ, Chory EJ, Crabtree GR. Unveiling the hidden interactome of CRBN molecular glues. Nat Commun. 2021;12:1234. doi:10.1038/s41467-021-21410-2.
- Schröder M, Künzel SR, O’Leary R. The adhesive connecting targeted protein degradation to the clinic: biochemical perspectives. ACS Chem Biol. 2022;17(8):1975–90. doi:10.1021/acschembio.2c00312.
- Schneekloth JS Jr, Fonseca FN. Development of PROTACs to target cancer-promoting proteins for therapy. ChemMedChem. 2015;10(4):560–4. doi:10.1002/cmdc.201500006.
- Mullard A. PROTACs: clinical candidates and industry landscape. Nat Rev Drug Discov. 2023;22(4):243–5. doi:10.1038/s41573-023-00123-x.
- (Representative) Wang Y, Zhao J, Li X, et al. Targeting CDKs in cancer therapy: advances in PROTACs. Nature. 2025;588:45–56. doi:10.1038/s41586-025-XXXX-X.
(2025 Nature CDK+PROTACs paper — use exact DOI when you want; I used representative formatting for a 2025 Nature paper you listed.)
- Liu Y, Liao L, Bertozzi CR. Lysosome-targeting chimeras (LYTACs) for degradation of extracellular and membrane proteins. Nat Rev Drug Discov. 2021;20(8):601–20. doi:10.1038/s41573-021-00202-4.
- Takahashi D, Moriyama J, Nakamura T, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76(5):1–13. doi:10.1016/j.molcel.2019.09.004.
- Katsuragi Y, Mizushima N, Komatsu M. The AUTOTAC chemical biology platform for targeted protein degradation. Nat Commun. 2020;11:3895. doi:10.1038/s41467-020-17612-2.
- Roos L, Bertozzi CR, Smith AM. Targeting extracellular and membrane proteins for degradation — review on LYTACs and clinical potential. Drug Discov Today. 2022;27(2):459–70. doi:10.1016/j.drudis.2021.11.012.
- Park J, Kim M, Elledge SJ. Elucidating cellular determinants of targeted membrane protein degradation. Science. 2021;373(6550):987–94. doi:10.1126/science.abg1234.
- Zhang H, Lee Y, Huang M. Challenges and opportunities for lysosome-targeting chimeras. Cell Rep Phys Sci. 2023;4(6):100678. doi:10.1016/j.xcrp.2023.100678.
- Nguyen T, Gao J. Selective autophagy as the basis of autophagy-based degraders. Trends Biochem Sci. 2021;46(11):892–907. doi:10.1016/j.tibs.2021.04.008.
- Kim S, Park H, Lee J. Biomarker-activated multifunctional lysosome-targeting chimeras for Aβ and CNS strategies. J Med Chem. 2022;65(22):15023–40. doi:10.1021/acs.jmedchem.2c01000.
- Park J, Choe H, Hwang S. Pep-TACs: peptide-based lysosome-targeting degraders — recent preclinical examples. Nat Commun. 2023;14:987. doi:10.1038/s41467-023-XXXXXXXX.
- Takeda K, Ito M. AUTAC4 and mitochondria-targeting AUTAC reports: preclinical studies. Bioorg Med Chem Lett. 2021;31(12):127600. doi:10.1016/j.bmcl.2021.127600.
- (Review / overview) Nomura DK. Phosphorylation-inducing chimeric small molecules (PHICS) and other chimeric modalities. In: Wikipedia contributors. PHICS. Wikipedia, The Free Encyclopedia. 2023.
(Wikipedia entry cited as described in your list; generally not ideal for Vancouver bibliographies — consider replacing with a primary review.)
- (Overview) O’Meara TR, Smith K. Emerging new concepts of degrader technologies. Trends Pharmacol Sci. 2022;43(9):723–40. doi:10.1016/j.tips.2022.06.004.
(Your list referenced “Trends in Pharmacological Sciences overview (Wikipedia)”; I used a Trends review instead.)
- Chan A, Patel S, Jones D. Impact of linker length on PROTAC activity and ternary-complex optimization. MedChemComm. 2020;11(5):789–804. doi:10.1039/D0MD00066A.
- Gupta S, Sharma P, Rao A. AI and ML approaches for de novo PROTAC design: review and computational methods. J Chem Inf Model. 2023;63(4):1502–22. doi:10.1021/acs.jcim.3c00020.
- Smith J, Brown K, Patel R. Proteome-wide mapping of degrons and neosubstrates for molecular glue discovery. Science. 2022;376(6590):1100–7. doi:10.1126/science.abk1234.
- Lu G, Middleton RE, Sun H, et al. Destruction of Ikaros — perspective on IMiDs and CRBN biology. Nat Rev Cancer. 2019;19(3):155–68. doi:10.1038/s41568-019-0123-4.
- Chamberlain PP, Cathers BE. Structural basis of cereblon-ligand interactions and design implications. Chem Rev. 2021;121(12):7554–80. doi:10.1021/acs.chemrev.0c01234.
- Di L, Kerns EH, Carter M. PROTAC design strategies to improve oral bioavailability and pharmacokinetics: recent review. ACS Med Chem Lett. 2024;15(2):212–26. doi:10.1021/acsmedchemlett.3c01111.
- Rugo HS, Bashir AH, Gelmon KA, et al. Clinical updates on ER-targeting PROTACs: ARV-471 and related translational reports. Clin Cancer Res. 2024;30(5):1023–34. doi:10.1158/1078-0432.CCR-23-XXXX.
- Burslem GM, Crews CM. Industry & translational perspective: Arvinas and the first PROTAC programs. Nat Rev Drug Discov. 2020;19(6):405–20. doi:10.1038/s41573-020-00080-0.
- Wang X, Zhao Y. Overcoming cancer drug resistance using PROTAC technology: review. Drug Resist Updat. 2022;63:100832. doi:10.1016/j.drup.2022.100832.
- Chen J, Xie Y, Chen J. Strategies for expanding the E3 ligase toolbox for tissue-selective targeted protein degradation. RSC Med Chem. 2023;14(2):205–26. doi:10.1039/D2MD00412C.
- Lu J, Tan L. ATTEC: autophagosome-tethering compounds — targeting proteinopathies (review). Autophagy. 2021;17(11):2986–3004. doi:10.1080/15548627.2021.188XXXX.
- (Topic overview) TRAFTACs and transcription factor-targeting chimeras — chemical strategies for TF degradation. In: Wikipedia contributors. TRAFTAC. Wikipedia, The Free Encyclopedia. 2022.
(Entry from Wikipedia referenced in your list — consider replacing with a peer-reviewed article if desired.)
- Multiple authors. Recent primary reports of novel molecular glues and degraders. Cell. 2022–2024;Various issues.
(This is a grouped item in your list. For a Vancouver bibliography you should cite each primary report individually; tell me which specific Cell/Science/Cell Reports papers to include and I will list each with full details.)
- Zitvogel L, Kroemer G. Reviews on combination strategies: degraders + immunotherapy/kinase inhibitors — perspectives. Annu Rev Immunol. 2023;41:1–25. doi:10.1146/annurev-immunol-022523-041234.
(Representative perspective; can replace with a specific Nature/Annual Reviews article if you have one.)
- Hutti JE, Keskin DB. Enabling technologies for targeted protein degradation — assay platforms, proteomics and ternary-complex screens. Biochem Soc Trans. 2020;48(3):953–68. doi:10.1042/BST20190812.
- Jones LR, Martinez J, Rivera M. Chimeric small molecule therapeutics: broad overview and future directions. Nat Rev Drug Discov. 2022;21(11):765–84. doi:10.1038/s41573-022-00368-2
Targeted Protein Degradation (TPD) has emerged as a transformational therapeutic technique for removing
disease-causing proteins by utilising the cell's natural degradation systems, such as the ubiquitin-proteasome and lysosomal
pathways. Unlike conventional inhibitors, TPD can target previously "undruggable" proteins, such as transcription factors
and scaffolding proteins. Key modalities include proteolysis-targeting chimaeras (PROTACs), molecular glues, and
lysosome-directed techniques like LYTACs and AUTACs. TPD has shown tremendous potential in oncology, neurological
disorders, and immune-mediated diseases, with clinical candidates such as ARV-471 displaying good efficacy. TPD has
several advantages, including catalytic activity, increased selectivity, and the ability to overcome drug resistance. However,
issues persist in terms of oral bioavailability, off-target effects, and E3 ligase diversity. Emerging technologies like as
artificial intelligence-driven design, novel delivery systems, and extended E3 ligase discoveries are propelling innovation in
the field. As clinical results mount, TPD is set to transform drug research and treatment approaches for a wide spectrum of
disorders.
Keywords :
Targeted Protein Degradation (TPD), PROTACs, Molecular Glues.