The Chemical Profiling of Cajanus cajan (L.) Huth (Fabaceae) Seed Oil Extract


Authors : Abdulai Turay; Hamza Amin Kargbo; Dr. Eugene B. S. Conteh

Volume/Issue : Volume 10 - 2025, Issue 4 - April


Google Scholar : https://tinyurl.com/rpwcua4e

DOI : https://doi.org/10.38124/ijisrt/25apr1955

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : This work investigated The Chemical Profiling of Cajanus Cajan (L.) Huth (Fabaceae) Seed Oil Extract using HPLC, GC-MS and FTIR analytical methods. The extraction was done with ethanol to yield a 2.40% yield crude extract. The crude extract was partitioned using hexane, ethyl acetate, dichloromethane and water. The yields of the fractions compared to the 400 g seed used for extraction are 0.30%, 0.46%, 0.36%, 0.65%. The result of the fractions compared to the crude extract (9.6 g) is 17.10%, 25.72%, 20.20% and 36.97 % of the crude extracts, respectively. HPLC analysis revealed the presence of Four (4) prominent phytochemicals: Gallic Acid, Magnoflorine, Rutin and Pinostrobin. The concentration of Gallic Acid, Magnoflorine, Rutin and Pinostrobin in 0.5 mg/mL (500 μg/mL) of cajanus cajan ethanol seed extract was 22.609 μg/mL, 175.236 μg/mL, 169.705 μg/mL and 90.525 μg/mL respectively. The results of the chemical composition of the n- hexane fraction of Cajanus cajan seed oil obtained by GC-MS analysis show nine (9) compounds with a 98% total oil content. The major compounds identified in the seed oil are octadecanoic acid (32.36%), 9, 12-octadecadienoic acid (Z, Z) (29.23%) and linoelaidic acid (25.31%). The FTIR analysis with Aqueous, ethyl acetate and dichloromethane fractions confirms the presence of the following phytochemicals: Esters, flavonoids, Alkaloids, Alcoholic or Phenolic compounds and carbonyl compounds.

References :

  1. A Direct Bioautographic Tlc Assay for Compounds Possessing Antibacterial Activity | Journal of Natural Products. (n.d.). Retrieved July 31, 2023, from https://pubs.acs.org/doi/pdf/10.1021/np50049a003
  2. Abo-Zeid, M. A. M., Abdel-Samie, N. S., Farghaly, A. A., & Hassan, E. M. (2018). Flavonoid fraction of Cajanus cajan prohibited the mutagenic properties of cyclophosphamide in mice in vivo. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 826, 1–5. https://doi.org/10.1016/j.mrgentox.2017.12.004
  3. Aggarwal, A., Nautiyal, U., & Negi, D. (2015). Characterization and evaluation of the antioxidant activity of Cajanus cajan and Pisum sativum. International Journal of Recent Advances in Science and Technology, 2(1). https://doi.org/10.30750/ijrast.214
  4. Aja, P. M., Alum, E. U., Ezeani, N. N., Nwali, B. U., & Edwin, N. (2015). Comparative Phytochemical Composition of Cajanus cajan Leaf and Seed. Amaral, T. Y., Padilha, I. G., Presídio, G. A., Silveira, E. A. A. S. da, Duarte, A. W. F., Barbosa, A. P. F., … López, A. M. Q. (2017). Antimicrobial and anti-inflammatory activities of Apis mellifera honey on the Helicobacter pylori infection of Wistar rats gastric mucosa. Food Science and Technology, 37, 34–41. https://doi.org/10.1590/1678-457X.31016
  5. Anadebe, V., Okafor, N., Ezeugo, J., Amanjide, I., & Ogide, B. (2017). GC-MS Analysis of Phytochemical Compounds in Cajanus Cajan Leaf.
  6. Animal models to test drugs with potential antidiabetic activity—ScienceDirect. (n.d.). Retrieved August 2, 2023, from https://www.sciencedirect.com/science/article/pii/S0378874107005867
  7. The anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’— ScienceDirect. (n.d.). Retrieved July 31, 2023, from https://www.sciencedirect.com/science/article/pii/S0378874106001851
  8. Antimicrobial_activity_of_leaf_extracts_of_Senna_obtusifolia_(L).pdf. (n.d.). Retrieved from https://indexmedicus.afro.who.int/iah/fulltext/Antimicrobial_activity_of_leaf_extracts_of_Senna_ obtusifolia_(L).pdf
  9. Bhushan R. Gudalwar, Wrushali A. Panchale, Jagdish V. Manwar, Minakshee G. Nimbalwar, Neha A. Badukale, & Ravindra L. Bakal. (2021). Pharmacognosy, phytochemistry and clinical applications of traditional medicinal plants as a memory booster. GSC Advanced Research and Reviews, 8(2), 019–029. https://doi.org/10.30574/gscarr.2021.8.2.0155
  10. Bravo, R. K. D., Angelia, M. R. N., Uy, L. Y. C., Garcia, R. N., & Torio, M. A. O. (2022). Isolation, purification and characterization of the antibacterial, antihypertensive and antioxidative properties of the bioactive peptides in the purified and proteolyzed major storage protein of pigeon pea (Cajanus cajan) seeds. Food Chemistry: Molecular Sciences, 4, 100062. https://doi.org/10.1016/j.fochms.2021.100062 Can remittances alleviate energy poverty in developing countries? New evidence from panel data. (n.d.). Retrieved October 12, 2023, from https://www.researchgate.net/publication/367503867_Can_remittances_alleviate_energy_poverty_in_developing_countries_New_evidence_from_panel_data Chinecherem, K. (n.d.). FIO-FIO (Cajanus cajan) LEAVES.
  11. da Silva, R. N., Brandão, M. A. G., & Ferreira, M. de A. (2020). Integrative Review as a Method to Generate or to Test Nursing Theory. Nursing Science Quarterly, 33(3), 258–263. https://doi.org/10.1177/0894318420920602
  12. Das, S., Teja, K. C., Mukherjee, S., Seal, S., Sah, R. K., Duary, B., … Bhattacharya, S. S. (2018). Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of Carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles. Environmental Research, 161, 512–523. https://doi.org/10.1016/j.envres.2017.11.054
  13. Duker-Eshun, G., Jaroszewski, J. W., Asomaning, W. A., Oppong-Boachie, F., & Brøgger Christensen, S. (2004). Antiplasmodial constituents of Cajanus cajan. Phytotherapy Research, 18(2), 128–130. https://doi.org/10.1002/ptr.1375
  14. Dutta, S., Halder, S., & Khaled, K. (2023). PHYTOCHEMICAL INVESTIGATION AND IN VITRO ANTIOXIDANT ACTIVITY OF SYZYGIUM JAMBOS FRUIT AND ITS SEED. https://doi.org/10.22159/ajpcr.2023v16i2.46496
  15. Ezike, A. C., Akah, P. A., Okoli, C. C., & Okpala, C. B. (2010). EXPERIMENTAL EVIDENCE FOR THE ANTIDIABETIC ACTIVITY OF CAJANUS CAJAN LEAVES IN RATS. Journal of Basic and Clinical Pharmacy, 1(2), 81–84.
  16. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(suppl 1), 69–75. https://doi.org/10.1289/ehp.01109s169
  17. Falcone Ferreyra, M. L., Rius, S., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2012.00222
  18. Ganeshpurkar, A., & Saluja, A. K. (2016). The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, 25. https://doi.org/10.1016/j.jsps.2016.04.025
  19. Green, P. W. C., Stevenson, P. C., Simmonds, M. S. J., & Sharma, H. C. (2003). Phenolic Compounds on the Pod-Surface of Pigeonpea, Cajanus cajan, Mediate Feeding Behavior of Helicoverpa armigera Larvae. Journal of Chemical Ecology, 29(4), 811–821. https://doi.org/10.1023/A:1022971430463
  20. Huie, C. W. (2002). A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry, 373(1), 23–30. https://doi.org/10.1007/s00216-002-1265-3
  21. IDOSR-JAS-21-59-75.pdf. (n.d.). Retrieved from https://www.idosr.org/wp- content/uploads/2017/01/IDOSR-JAS-21-59-75.pdf
  22. Ijpsr, H., P., & Mathad, P. (2017). COMPARATIVE STUDY ON PHARMACOGNOSTIC AND PHYTOCHEMICAL COMPOSITION OF SEED COAT AND COTYLEDON OF CAJANUS CAJAN L. 8, 1000–1007. https://doi.org/10.13040/IJPSR.0975-8232.8(4).1000-07
  23. Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., … Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225–237. https://doi.org/10.22038/ijbms.2019.32806.7897 Kong, Y., Fu, Y.-J., Zu, Y.-G., Chang, F.-R., Chen, Y.-H., Liu, X.-L., … Schiebel, H.-M. (2010). Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Food Chemistry, 121(4), 1150–1155. https://doi.org/10.1016/j.foodchem.2010.01.062
  24. Krishna, R. N., Anitha, R., & Ezhilarasan, D. (2020). Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna Journal of Phytomedicine, 10(5), 440–447.
  25. Luo, Q.-F., Sun, L., Si, J.-Y., & Chen, D.-H. (2008). Hypocholesterolemic effect of stilbenes containing extract-fraction from Cajanus cajan L. on diet-induced hypercholesterolemia in mice. Phytomedicine, 15(11), 932–939. https://doi.org/10.1016/j.phymed.2008.03.002
  26. Malgi, R., Mane, D. V., Kumar, D. D. N., Paramshetty, V., & Kobanna, S. (n.d.). Formulation and evaluation of herbal toothpaste by Cajanus cajan (L.) Leaf extract.
  27. Maneechai, S., & Rinthong, P. (2018). Total Phenolic Content and Tyrosinase Inhibitory Potential of Extracts from Cajanus cajan (L.) Millsp. Pharmacognosy Journal, 10, s109–s112. https://doi.org/10.5530/pj.2018.6s.21
  28. Marcía-Fuentes, J., Santos-Aleman, R., Borrás-Linares, I., & Sánchez, J. L. (2021). The Carano (Cassia grandis L.): Its Potential Usage in Pharmacological, Nutritional, and Medicinal Applications. In N. R. Maddela & L. C. García (Eds.), Innovations in Biotechnology for a Sustainable Future (pp.403–427). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-80108- 3_19
  29. Masoko, P., Mokgotho, M. P., Mbazima, V. G., & Mampuru, L. J. (2008). Biological activities of Typha capensis (Typhaceae) from Limpopo Province (South Africa). African Journal of Biotechnology, 7(20). https://doi.org/10.4314/ajb.v7i20.59423
  30. Nicholson, R. A., David, L. S., Pan, R. L., & Liu, X. M. (2010). Pinostrobin from Cajanus cajan (L.) Millsp. Inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes. Fitoterapia, 81(7), 826–829. https://doi.org/10.1016/j.fitote.2010.05.005
  31. Nix, A., Paull, C. A., & Colgrave, M. (2015). The flavonoid profile of pigeonpea, Cajanus cajan: A review. SpringerPlus, 4(1), 125. https://doi.org/10.1186/s40064-015-0906-x
  32. Ogoda Onah, J., Akubue, P. I., & Okide, G. B. (2002). The kinetics of reversal of pre-sickled erythrocytes by the aqueous extract of Cajanus cajan seeds. Phytotherapy Research, 16(8), 748–750. https://doi.org/10.1002/ptr.1026
  33. Ogunbinu, A. O., Flamini, G., Cioni, P. L., Adebayo, M. A., & Ogunwande, I. A. (2009). Constituents of Cajanus Cajan (L.) Millsp., Moringa Oleifera Lam., Heliotropium Indicum L. and Bidens Pilosa L. from Nigeria. Natural Product Communications, 4(4), 1934578X0900400427. https://doi.org/10.1177/1934578X0900400427
  34. Okey-Ndeche, N., Pius, E., Unegbu, V., & Ndidi, O.-N. (2020). Phytochemical and Antibacterial Properties of Garcinia kola seeds (bitter kola) on Escherichia coli and Staphylococcus aureus. Global Science Independent Journal. Global Science Education Journal.
  35. Okon, E., Kukula-Koch, W., Jarząb, A., Hałasa, M., Stepulak, A., & Wawruszak, A. (2020). Advances in Chemistry and Bioactivity of Magnoflorine and Magnoflorine-Containing Extracts. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21041330
  36. Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science & Nutrition, 6(7), 1879–1889. https://doi.org/10.1002/fsn3.740
  37. Orni, P. R., Ahmed, S. Z., Monefa, M., Khan, T., & Dash, P. R. (n.d.). Pharmacological and phytochemical properties of Cajanus cajan (L.) Huth. (Fabaceae): A review.
  38. Pal, D., Mishra, P., Sachan, N., & Ghosh, A. K. (2011). Biological activities and medicinal properties of Cajanus cajan (L) Millsp. Journal of Advanced Pharmaceutical Technology & Research, 2(4), 207–214. https://doi.org/10.4103/2231-4040.90874
  39. Pal, D., Sahoo, M., & Mishra, A. K. (2005). Analgesic and anticonvulsant effects of saponin isolated from the stems of Opuntia vulgaris Mill in mice. Eur Bull Drug Res, 13, 91–97.
  40. Phillipson, J. D. (2007). Phytochemistry and pharmacognosy. Phytochemistry, 68(22), 2960–2972. https://doi.org/10.1016/j.phytochem.2007.06.028
  41. Prevalence and Associated Factors of Burnout Syndrome among Nurses in Public Hospitals, Southwest Ethiopia. (n.d.). Retrieved October 12, 2023, from https://www.researchgate.net/publication/351764652_Prevalence_and_Associated_Factors_of_B urnout_syndrome_among_Nurses_in_Public_Hospitals_Southwest_Ethiopia
  42. Qi, X.-L., Li, T.-T., Wei, Z.-F., Guo, N., Luo, M., Wang, W., … Peng, X. (2014). Solvent-free microwave extraction of essential oil from pigeon pea leaves [Cajanus cajan (L.) Millsp.] and evaluation of its antimicrobial activity. Industrial Crops and Products, 58, 322–328. https://doi.org/10.1016/j.indcrop.2014.04.038
  43. Rashid, Md. M., Amran, M., & Hossain, M. (2017). Evaluation of Analgesic Activity by Acetic Acid Induced Writhing Method of Crude Extracts of Acacia nilotica. Scholars Academic Journal of Pharmacy (SAJP).
  44. Sahu, M., Verma, D., & Haris, K. (2014). Phytochemical analysis of the leaf, stem and seed extracts of cajanus cajan L (dicotyledonous: Fabaceae). WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES, 3, 694–733.
  45. Samie, A., Obi, C. L., Bessong, P. O., & Namrita, L. (2005). Activity profiles of fourteen selected medicinal plants from Rural Venda communities in South Africa against fifteen clinical bacterial species. African Journal of Biotechnology, 4(12). https://doi.org/10.4314/ajb.v4i12.71495
  46. Sarkar, R., Hazra, B., Mandal, S., Biswas, S., & Mandal, N. (2009a). Assessment of in Vitro Antioxidant and Free Radical Scavenging Activity of Cajanus cajan. Journal of Complementary and Integrative Medicine, 6(1). https://doi.org/10.2202/1553-3840.1248
  47. Sarkar, R., Hazra, B., Mandal, S., Biswas, S., & Mandal, N. (2009b). Assessment of in Vitro Antioxidant and Free Radical Scavenging Activity of Cajanus cajan. Journal of Complementary and Integrative Medicine, 6(1). https://doi.org/10.2202/1553-3840.1248
  48. Sasidharan, S., Chen, Y., Saravanan, D., Sundaram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 8(1), 1–10. https://doi.org/10.1625/jcam.8.1
  49. Shahverdi, A. R., Abdolpour, F., Monsef-Esfahani, H. R., & Farsam, H. (2007). A TLC bioautographic assay for the detection of nitrofurantoin resistance reversal compound. Journal of Chromatography B, 850(1), 528–530. https://doi.org/10.1016/j.jchromb.2006.11.011
  50. Silverstein, R. M., Webster, F. X., & Kiemle, D. (2005). Spectrometric Identification of Organic Compounds, 7th Edition. Wiley.
  51. Talari, A., & Shakappa, D. (2018). Role of pigeon pea (Cajanus cajan L.) in human nutrition and health: A review. Asian Journal of Dairy and Food Research, (of). https://doi.org/10.18805/ajdfr.DR- 1379
  52. The Antiplasmodial Potential of Medicinal Plants Used in the Cameroonian Pharmacopoeia: An Updated Systematic Review and Meta-Analysis. (n.d.). Retrieved July 24, 2023, from https://www.hindawi.com/journals/ecam/2022/4661753/
  53. Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking—ScienceDirect. (n.d.). Retrieved August 1, 2023, from https://www.sciencedirect.com/science/article/pii/S2213453017300344
  54. Three stilbenes from pigeon peas with promising anti-MRSA biofilm formation activities. (2023, May 25). https://doi.org/10.21203/rs.3.rs-2962278/v1
  55. Trease and Evans’ Pharmacognosy—Edition 16—By William Charles Evans, BPharm, BSc, PhD, DSc, FIBiol, FLS, FRPharmS Elsevier Inspection Copies. (n.d.). Retrieved October 2, 2023, from https://educate.elsevier.com/book/details/9780702029332
  56. What is stearic acid? Benefits, side effects, and use. (2022, April 19). Retrieved October 12, 2023, from https://www.medicalnewstoday.com/articles/stearic-acid
  57. Zhang, D.-Y., Zhang, S., Zu, Y.-G., Fu, Y.-J., Kong, Y., Gao, Y., … Efferth, T. (2010). Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. Separation and Purification Technology, 74(2), 261–270. https://doi.org/10.1016/j.seppur.2010.06.015 Zhang, D.-Y., Zu, Y.-G., Fu, Y.-J., Luo, M., Gu, C.-B., Wang, W., & Yao, X.-H. (2011). Negative pressure cavitation extraction and antioxidant activity of biochanin A and genistein from the leaves of Dalbergia odorifera T. Chen. Separation and Purification Technology, 83, 91–99. https://doi.org/10.1016/j.seppur.2011.09.017
  58. Zu, Y., Liu, X., Fu, Y., Wu, N., Kong, Y., & Wink, M. (2010). Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomedicine, 17(14), 1095–1101. https://doi.org/10.1016/j.phymed.2010.04.005

This work investigated The Chemical Profiling of Cajanus Cajan (L.) Huth (Fabaceae) Seed Oil Extract using HPLC, GC-MS and FTIR analytical methods. The extraction was done with ethanol to yield a 2.40% yield crude extract. The crude extract was partitioned using hexane, ethyl acetate, dichloromethane and water. The yields of the fractions compared to the 400 g seed used for extraction are 0.30%, 0.46%, 0.36%, 0.65%. The result of the fractions compared to the crude extract (9.6 g) is 17.10%, 25.72%, 20.20% and 36.97 % of the crude extracts, respectively. HPLC analysis revealed the presence of Four (4) prominent phytochemicals: Gallic Acid, Magnoflorine, Rutin and Pinostrobin. The concentration of Gallic Acid, Magnoflorine, Rutin and Pinostrobin in 0.5 mg/mL (500 μg/mL) of cajanus cajan ethanol seed extract was 22.609 μg/mL, 175.236 μg/mL, 169.705 μg/mL and 90.525 μg/mL respectively. The results of the chemical composition of the n- hexane fraction of Cajanus cajan seed oil obtained by GC-MS analysis show nine (9) compounds with a 98% total oil content. The major compounds identified in the seed oil are octadecanoic acid (32.36%), 9, 12-octadecadienoic acid (Z, Z) (29.23%) and linoelaidic acid (25.31%). The FTIR analysis with Aqueous, ethyl acetate and dichloromethane fractions confirms the presence of the following phytochemicals: Esters, flavonoids, Alkaloids, Alcoholic or Phenolic compounds and carbonyl compounds.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe