The Design of 25,200 mAh Solar-based Portable Powerbank with Dual Output as Alternate Power Source


Authors : Refinur Amir Muhammad; Bambang Priyono

Volume/Issue : Volume 9 - 2024, Issue 6 - June

Google Scholar : https://tinyurl.com/mr26aa6s

Scribd : https://tinyurl.com/dzt2zhuc

DOI : https://doi.org/10.38124/ijisrt/IJISRT24JUN591

Abstract : This paper describes about how to design and build a portable powerbank with 25,200 mAh capacity which can be charged using mini solar panel PV. In this study, the power output by the powerbank will be measured and tested on several load devices like smartphones and tablet. The test result shows that this powerbank is capable to receive input voltage from the solar panel with average 10V, and also able to produce output power with average value of 1100 mAh to the load devices.

Keywords : Powerbank, Solar Panel, Battery Management System.

References :

  1. Noura N., Boulon L., Jemei S. 2020. A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. Universite du Quebec. World Electric Vehicle Journal, September 2020.
  2. Shah F.A., Sheikh S.S., Mir U.I., Athar S.O. 2019. Battery Health Monitoring for Commercialized Electric Vehicle Batteries: Lithium-Ion. Istanbul Technical University. 5th International Conference on PGSRET.
  3. Xiong S., Ji J., Ma X. 2014. Environmental and Economic Evaluation of Remanufacturing Lithium-ion Batteries from Electric Vehicles. Shenzen University. Elsevier, Waste Management.
  4. Udin M., Kaloko B.S., Hardianto T. 2017. Peramalan Kapasitas Baterai Lead Acid pada Mobil Listrik Berbasis Levenberg Marquardt Neural Network. Universitas Jember. Berkala Saintek, V (2): 112-117.
  5. Afif M.T., Pratiwi I.A.P. 2015. Analisis Perbandingan Baterai Lithium-ion, Lithium-Polymer, Lead Acid, dan Nickel-Metal Hydride pada Penggunaan Mobil Listrik – Review. Universitas Brawijaya. Jurnal Rekayasa Mesin Vol.6, No.2 Tahun 2015: 99.
  6. Liu, Jiahui. 2015. Charge and Discharge Characterization of Lithium-ion Electrode Materials Through Coin Cell Testing. Ohio State University.
  7. Hossain Lipu M.S., Hannan M.A., et.al. 2018. A Review of State of Health and Remaining Useful Life Estimation Methods for Lithium-Ion Battery in Electic Vehicles: Challenges and Recommendations. Journal of Cleaner Production (2018).
  8. Guo Z, Qiu X., Hou G., et.al. 2014. State of Health Estimation for Lithium-Ion Batteries Based on Charging Curves. Tsinghua University. Elsevier, Journal of Power Resources.
  9. Banaei R.M., Sani G.S. 2018. Analysis and Implementation of a New SEPIC-Based Single-Switch Buck–Boost DC–DC Converter with Continuous Input Current, IEEE Transactions on Power Electronics, vol.33, no.12, December 2018
  10. Ashari, Mochamad. 2012.Sistem Konverter DC.Surabaya. ITS Press.
  11. Hart, D.W. 2011. Power Electronics. New York: McGraw-Hill.
  12. Nayar, C.V., Ashari, M., Keerthipala, W. W. L. 2000. A Grid-Interactive Photovoltaic   Uninterruptible Power Supply System Using Battery Storage and a Back Up Diesel Generator, IEEE Transactions on Energy Conversion, vol.15, no.3, pp. 348-353, September 2000.
  13. Rashid, M. H. 1993.Macam-Macam DC Chopper. Power Electronics : Circuit, Devices, and Application. New Jersey : Prentince-Hall International Inc.
  14. Wildi, Theodore. 2002. Electrical Machines, Drives, and Power System Fifth Edition, Pearson Education Inc.
  15. J. T. Mesin, F. T. Industri, and U. Trisakti, “Perencanaan Pembangkit Listrik Tenaga Surya Di Atap Gedung Harry Hartanto Universitas Trisakti,” pp. 1–11, 2016.
  16. T. T. Gultom, “Pemanfaatan Photovoltaic sebagai Pembangkit Listrik Tenaga Surya,” Immanuel Medan, vol. 2, no. 5, pp. 33–42, 2015.
  17. B. Angriawan, F. Teknik, J. Teknik, and U. Muhammadiyah, “Pembasmi Hama Menggunakan Ultra Sonic berbasis Panel Surya ).” pp. 6–7, 2015.
  18. A. K. Singh, A. K. Agrawal, S. Vohra, S. S. Thakur, and G. Patel, “Solar charge controller,” Int. J. Acad. Res. Dev., vol. 2, no. 6, pp. 994–1001, 2017.
  19. Nurfajriansyah, Rizal. “Perancangan Portable Powerbank Berbasis Panel Surya sebagai Multipurpose Reserve Power Generation (MRPG)”. Program Studi Teknik Elektro Universitas Islam Indonesia. 2018
  20. R. M. Hamid et al., “Rancang Bangun Charger Baterai Untuk Kebutuhanan,” J. Teknol. Terpadu, vol. 4, no. 2, pp. 130–136, 2016.

This paper describes about how to design and build a portable powerbank with 25,200 mAh capacity which can be charged using mini solar panel PV. In this study, the power output by the powerbank will be measured and tested on several load devices like smartphones and tablet. The test result shows that this powerbank is capable to receive input voltage from the solar panel with average 10V, and also able to produce output power with average value of 1100 mAh to the load devices.

Keywords : Powerbank, Solar Panel, Battery Management System.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe