The Integration of Artificial Intelligence in Forensic Auditing and its Implications for Real-Time Fraud Detection in Global Financial Institutions


Authors : Esther Alaka; Ayomikun Eunice Akindayo; Oluwafeyisike Ilemore; Igba Emmanuel

Volume/Issue : Volume 10 - 2025, Issue 9 - September


Google Scholar : https://tinyurl.com/2fjmr6aa

Scribd : https://tinyurl.com/mwcnxhw3

DOI : https://doi.org/10.38124/ijisrt/25sep1334

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : The integration of Artificial Intelligence (AI) into forensic auditing has emerged as a transformative approach to strengthening fraud detection and risk management within global financial institutions. Traditional auditing methods, while effective in retrospective analysis, often lack the speed and adaptability required to detect increasingly complex financial crimes in real time. AI-driven technologies, including machine learning, natural language processing, and predictive analytics, offer advanced capabilities for analyzing large volumes of transactional data, identifying hidden patterns, and uncovering anomalies that may indicate fraudulent activity. This review paper explores the evolving role of AI in forensic auditing, emphasizing its potential to enhance accuracy, efficiency, and timeliness in fraud detection processes. It further examines the practical implications for financial institutions, including improved compliance with regulatory frameworks, enhanced transparency, and proactive risk mitigation. Additionally, the review highlights challenges such as algorithmic bias, data privacy concerns, and the need for skilled professionals to interpret AI-generated insights. By synthesizing current research and industry practices, this paper provides a comprehensive assessment of how AI-enabled forensic auditing can redefine fraud detection and strengthen the resilience of financial systems in an increasingly digitized global economy.

References :

  1. 161. Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
  2. Abiodun, K., Alaka, E., Jinadu, S. O., Igba, E., & Ezeh, V. N. (2025). A Review of Federated Learning Approaches for Predictive Modeling and Confidential Data Analysis in Lending and Borrowing Behavior Across Decentralized Financial Networks. Finance & Accounting Research Journal, X (3), July 2025.  https://doi.org/10.51594/farj.v7i3.
  3. Abiodun, K., Jinadu, S. O., Alaka, E., Igba, E., & Ezeh, V. N. (2024). Risk-Sensitive Financial Dashboards with Embedded Machine Learning: A User-Centric Approach to Operational Transparency. International Journal of Scientific Research and Modern Technology, 3(2), 1–18. https://doi.org/10.38124/ijsrmt.v3i2.678
  4. Abiodun, K., Ogbuonyalu, U. O., Dzamefe, S., Vera, E. N., Oyinlola, A., & Igba, E. (2023). Exploring Cross-Border Digital Assets Flows and Central Bank Digital Currency Risks to Capital Markets Financial Stability. International Journal of Scientific Research and Modern Technology, 2(11), 32–45. https://doi.org/10.38124/ijsrmt.v2i11.447
  5. Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. (Javaid, M., & Nobanee, H., 2023) International Journal of Accounting Information Systems, 48, 100598. https://doi.org/10.1016/j.accinf.2022.100598
  6. Addy, W. A., & Sanni, M. (2024). Predictive analytics in credit risk management for banks: trends, challenges, and performance evaluations. GSC Advanced Research and Reviews, 18(2), 434-449.
  7. Adelakun, B. O., Onwubuariri, E. R., Adeniran, G. A., & Ntiakoh, A. (2024). Enhancing fraud detection in accounting through AI: Techniques and case studies. Finance & Accounting Research Journal, 6(6), 1232. https://doi.org/10.51594/farj.v6i6.1232
  8. Adeyelu, O. O., Ugochukwu, C. E., & Shonibare, M. A. (2024). Automating financial regulatory compliance with AI: A review and application scenarios. Finance & Accounting Research Journal, 6(4), 1035. https://doi.org/10.51594/farj.v6i4.1035
  9. AI and Financial Fraud Prevention: Mapping the Trends and Challenges Through a Bibliometric Lens.” (2024). Journal of Risk and Financial Management, 18(6), 323. https://doi.org/10.3390/jrfm18060323
  10. AI-Driven Financial Transparency and Corporate Governance: Enhancing Accounting Practices with Evidence from Jordan. (2025). Sustainability, 17(9), 3818. https://doi.org/10.3390/su17093818
  11. Alaka, E., Abiodun, K., Jinadu, S. O., Igba, E. & Ezeh, V. N. (2025). Data Integrity in Decentralized Financial Systems: A Model for Auditable, Automated Reconciliation Using Blockchain and AI, International Journal of Management and Commerce Innovations Vol. 13, Issue 1, pp: (136-158) DOI: https://doi.org/ 10.5281/zenodo.15753099
  12. Alhazmi, A., Islam, S. M. N., & Prokofieva, M. (2025). The impact of artificial intelligence adoption on the quality of financial reports on the Saudi Stock Exchange. International Journal of Financial Studies, 13(1), 21. https://doi.org/10.3390/ijfs13010021 MDPI
  13. Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637
  14. Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637
  15. Almaqtari, F. A. (2024). The Role of IT Governance in the Integration of AI in Accounting and Auditing Operations. Economies, 12(8), 199. https://doi.org/10.3390/economies12080199 MDPI
  16. Amebleh, J., & Igba, E. (2024). Causal Uplift for Rewards Aggregators: Doubly-Robust Heterogeneous Treatment-Effect Modeling with SQL/Python Pipelines and Real-Time Inference. International Journal of Scientific Research and Modern Technology, 3(5), 39–55. https://doi.org/10.38124/ijsrmt.v3i5.819
  17. Atalor, S. I. & Enyejo, J. O. (2025). Integration of extended reality (XR) for oncology pharmacist training in chemotherapeutic compounding and risk mitigation International Medical Science Research Journal Volume 5, Issue 4, DOI URL: https://doi.org/10.51594/imsrj.v5i4.1931
  18. Atalor, S. I. & Omachi, A. (2025). Transformer-Based Natural Language Processing Models for Mining Unstructured Oncology Clinical Notes to Improve Drug Matching, International Journal of Scientific Research in Science, Engineering and Technology Volume 12, Issue 2 doi: https://doi.org/10.32628/IJSRSET25122197
  19. Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880 
  20. Atalor, S. I. (2022). Blockchain-Enabled Pharmacovigilance Infrastructure for National Cancer Registries. International Journal of Scientific Research and Modern Technology, 1(1), 50–64. https://doi.org/10.38124/ijsrmt.v1i1.493
  21. Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496
  22. Atalor, S. I. (2024). Building a geo-analytic public health dashboard for tracking cancer drug deserts in U.S. counties, International Medical Science Research Journal Volume 4, Issue 11, Fair East Publishers DOI: 10.51594/imsrj. v4i11.1932
  23. Atalor, S. I., & Enyejo, J. O. (2025). Mobile Health Platforms for Medication Adherence among Oncology Patients in Rural Populations International Journal of Innovative Science and Research Technology Volume 10, Issue 5, ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25may415
  24. Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi: https://doi.org/10.32628/IJSRST23113269
  25. Ayodele, E., Oye, M. A., Alimi, B. C., & Obitolu, S. B. (2025). Investigating blockchain-based smart contracts for cross-border payment settlement, regulatory compliance and risk reduction in international finance.
  26. Azonuche T. I, Aigbogun, M. E & Enyejo, J. O. (2025). Investigating Hybrid Agile Frameworks Integrating Scrum and Devops for Continuous Delivery in Regulated Software Environments. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25apr1164
  27. Azonuche, T. I., & Enyejo, J. O. (2024). Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432
  28. Azonuche, T. I., & Enyejo, J. O. (2024). Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69. https://doi.org/10.38124/ijsrmt.v3i6.449
  29. Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448.
  30. Azonuche, T. I., & Enyejo, J. O. (2025). Adaptive Risk Management in Agile Projects Using Predictive Analytics and Real-Time Velocity Data Visualization Dashboard. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, April – 2025 ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25apr2002
  31. Bakumenko, A., & Tropmann-Frick, M. (2022). Detecting anomalies in financial data using machine learning: applications to general ledger auditing. Systems, 10(5), 130. https://doi.org/10.3390/systems10050130
  32. Bias and ethics of AI systems applied in auditing - A systematic review. Scientific African, 25, e02281. (2024). https://doi.org/10.1016/j.sciaf.2024.e02281
  33. Bolgouras, V., Zarras, A., Leka, C., Stylianou, I., Farao, A., & Xenakis, C. (2025). EU regulatory ecosystem for ethical AI. AI and Ethics. https://doi.org/10.1007/s43681-025-00749-x
  34. Boulieris, P., Symeonidis, A. L., & Sergiadis, G. (2024). Fraud detection with natural language processing. Machine Learning, 113, 1235-1265. https://doi.org/10.1007/s10994-023-06354-5
  35. Černevičienė, J., Budria, S., & Skaržauskienė, R. (2024). Explainable artificial intelligence (XAI) in finance. Artificial Intelligence Review, 57, 10854-8. https://doi.org/10.1007/s10462-024-10854-8
  36. Cyuma, J. L.C., George, M. B., Enyejo, J. O. & Kachalla, I. (2025). Developing Smart Agroforestry Systems with Fire-Resistant Plant Species and Controlled Burning for Sustainable Land Management.  International Journal of Innovative Science and Research Technology, Volume 10 - 2025, Issue 3 - March. https://doi.org/10.38124/ijisrt/25mar1335.
  37. Digital payment fraud detection methods in digital ages and Industry 4.0.” (2022). Computers & Electrical Engineering, 100, 107734. https://doi.org/10.1016/j.compeleceng.2022.107734
  38. Dr Emily cook (2024) https://www.independent.co.uk/news/business/top-employers/hr-gen-z-wellbeing-workplace-employers-b2632788.html
  39. Hemati, H., Schreyer, M., & Borth, D. (2021). Continual Learning for Unsupervised Anomaly Detection in Continuous Auditing of Financial Accounting Data. arXiv. https://arxiv.org/abs/2112.13215
  40. Hemati, H., Schreyer, M., & Borth, D. (2021). Continual Learning for Unsupervised Anomaly Detection in Continuous Auditing of Financial Accounting Data. arXiv. https://doi.org/10.48550/arXiv.2112.13215
  41. Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation in auditing. Journal of Emerging Technologies in Accounting, 16(1), 113-127. https://doi.org/10.2308/jeta-52216
  42. Idika, C. N., James, U. U., Ijiga, O. M., Okika, N. &   Enyejo, L. A, (2024). Secure Routing Algorithms Integrating Zero Trust Edge Computing for Unmanned Aerial Vehicle Networks in Disaster Response Operations International Journal of Scientific Research and Modern Technology, (IJSRMT) Volume 3, Issue 6, https://doi.org/10.38124/ijsrmt.v3i6.635
  43. Idika, C. N., James, U.U, Ijiga, O. M., Enyejo, L. A. (2023). Digital Twin-Enabled Vulnerability Assessment with Zero Trust Policy Enforcement in Smart Manufacturing Cyber-Physical System International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 9, Issue 6 doi: https://doi.org/10.32628/IJSRCSEIT
  44. Igba, E., Abiodun, K. & Ali, E. O. (2025). Building the Backbone of the Digital Economy and Financial Innovation through Strategic Investments in Data Centers. International Journal of Innovative Science and Research Technology, ISSN No: -2456-2165. https://doi.org/10.5281/zenodo.14651210
  45. Igba, E., Olarinoye, H. S., Nwakaego, V. E., Sehemba, D. B., Oluhaiyero. Y. S. & Okika, N. (2025). Synthetic Data Generation Using Generative AI to Combat Identity Fraud and Enhance Global Financial Cybersecurity Frameworks. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 4, Issue 2, 2025. DOI: https://doi.org/10.5281/zenodo.14928919 
  46. Igba, E., Olarinoye, H. S., Ezeh, N. V., Sehemba, D. B., Oluhaiyero, Y. S., & Okika, N. (2025). Synthetic Data Generation Using Generative AI to Combat Identity Fraud and Enhance Global Financial Cybersecurity Frameworks. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 4, Issue 2, 2025.  DOI: https://doi.org/10.5281/zenodo.14928919
  47. Imoh, P. O. & Enyejo, J. O. (2025). Analyzing Social Communication Deficits in Autism Using Wearable Sensors and Real-Time Affective Computing Systems, International Journal of Innovative Science and Research Technology Volume 10, Issue 5 https://doi.org/10.38124/ijisrt/25may866
  48. Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
  49. Imoh, P. O., & Idoko, I. P. (2022). Gene-Environment Interactions and Epigenetic Regulation in Autism Etiology through Multi-Omics Integration and Computational Biology Approaches. International Journal of Scientific Research and Modern Technology, 1(8), 1–16. https://doi.org/10.38124/ijsrmt.v1i8.463
  50. Imoh, P. O., & Idoko, I. P. (2023). Evaluating the Efficacy of Digital Therapeutics and Virtual Reality Interventions in Autism Spectrum Disorder Treatment. International Journal of Scientific Research and Modern Technology, 2(8), 1–16. https://doi.org/10.38124/ijsrmt.v2i8.462 
  51. Imoh, P.O., Ajiboye,A. S., Balogun, T. K., Ijiga, A. C., Olola, T, M. & Ahmadu, E. O. (2025). Exploring the integration of psychedelic-assisted therapy and digital mental health interventions in trauma recovery for underserved adults with high-functioning autism, Magna Scientia Advanced Research and Reviews, 2025, DOI:https://doi.org/10.30574/msarr.2025.14.1.0079
  52. Impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices. (2024). Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100218. https://doi.org/10.1016/j.joitmc.2024.100218
  53. Is artificial intelligence improving the audit process?” (2022). Review of Accounting Studies, 27, 938–985. https://doi.org/10.1007/s11142-022-09697-x
  54. Izundu, F. C., Imoh, P. O., Enyejo, J. O. & Olola, T. M. (2025). Designing Inclusive Urban Planning Platforms Integrating Real-Time Sign Language Interpretation for Deaf Community Participation in Policymaking International Journal of Social Science and Humanities Research DOI: https://doi.org/10.5281/zenodo.16894453
  55. Jagdale, R., & Deshmukh, M. (2025). Natural Language Processing in Finance: Techniques, Applications, and Future Directions. In Machine Learning and Modeling Techniques in Financial Data Science (pp. 411-434). IGI Global Scientific Publishing.
  56. Javaid, H. A. (2024). Improving fraud detection and risk assessment in financial service using predictive analytics and data mining. Integrated Journal of Science and Technology1(3).
  57. Javaid, M., & Nobanee, H. (2023). Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. International Journal of Accounting Information Systems, 48, 100598. https://doi.org/10.1016/j.accinf.2022.100598
  58. Kamalaruban, P., Pi, Y., Burrell, S., Drage, E., Skalski, P., Wong, J., & Sutton, D. (2024). Evaluating fairness in transaction fraud models: Fairness metrics, bias audits, and challenges. arXiv, 2409.04373. https://arxiv.org/abs/2409.04373
  59. Kokina, J., & Leung, P. (2025). Challenges and opportunities for artificial intelligence in auditing by large public accounting firms. International Journal of Accounting Information Systems. https://doi.org/10.1016/j.intaccinf.2025.100819
  60. Leocádio, D., Malheiro, L., & Reis, J. (2024). Artificial Intelligence in Auditing: A Conceptual Framework for Auditing Practices. Administrative Sciences, 14(10), 238. https://doi.org/10.3390/admsci14100238
  61. Louati, H., Louati, A., Kariri, E., & Almekhlafi, A. (2025). AI-Based Anomaly Detection and Optimization Framework for Blockchain Smart Contracts. Administrative Sciences, 15(5), 163. https://doi.org/10.3390/admsci15050163
  62. Murikah, W., & Murgo, M. (2024). Bias and ethics of AI systems applied in auditing. Scientific African, 25, e02281. https://doi.org/10.1016/j.sciaf.2024.e02281
  63. Neil Sahota (2024) https://www.neilsahota.com/ai-and-workforce-how-ai-is-changing-jobs-and-careers/
  64. Odeyemi, O., Ibeh, C. V., Zamanjomane, N., Asuzu, O. F., & Awonuga, K. F. (2024). Forensic accounting and fraud detection: A review of techniques in the digital age. Finance & Accounting Research Journal, 6(2), 788. https://doi.org/10.51594/farj.v6i2.788
  65. Ogbuonyalu, U. O, Abiodun, K., Dzamefe, S., Vera, E. N., Oyinlola, A. & Igba, E. (2025). Integrating Decentralized Finance Protocols with Systemic Risk Frameworks for Enhanced Capital Markets Stability and Regulatory Oversight. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25apr1165
  66. Ogbuonyalu, U. O., Abiodun, K., Dzamefe, S., Vera, E. N., Oyinlola, A., & Igba. E. (2024). Assessing Artificial Intelligence Driven Algorithmic Trading Implications on Market Liquidity Risk and Financial Systemic Vulnerabilities. International Journal of Scientific Research and Modern Technology, 3(4), 18–21. https://doi.org/10.38124/ijsrmt.v3i4.433
  67. Ogbuonyalu, U. O., Abiodun, K., Dzamefe, S., Vera, E. N., Oyinlola, A. & Igba, E. (2025). Beyond the credit score: The untapped power of LLMS in banking risk models. Finance & Accounting Research Journal, 7(4), May 2025.  https://doi.org/10.51594/farj.v7i4.1905
  68. Okpanachi, A. T., Adeniyi, M., Igba, E. & Dzakpasu, N. H. (2025). Enhancing Blood Supply Chain Management with Blockchain Technology to Improve Diagnostic Precision and Strengthen Health Information Security. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25apr214
  69. Okpanachi, A. T., Igba, E., Imoh, P. O., Dzakpasu, N. H. & Nyaledzigbor, M. (2025). Leveraging Digital Biomarkers and Advanced Data Analytics in Medical Laboratory to Enhance Early Detection and Diagnostic Accuracy in Cardiovascular Diseases.  International Journal of Scientific Research in Science and Technology Volume 12, doi : https://doi.org/10.32628/ IJSRST251222590
  70. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562
  71. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Analyzing Email Marketing Impacts on Revenue in Home Food Enterprises using Secure SMTP and Cloud Automation International Journal of Innovative Science and Research Technology Volume 10, Issue 6, https://doi.org/10.38124/ijisrt/25jun286
  72. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Assessing Kanban Implementation for Secure Workflow Optimization in Cloud DevOps Using Zero Trust Architecture Enhancements, Magna Scientia Advanced Research and Reviews, 2025, DOI:  https://doi.org/10.30574/msarr.2025.14.1.0072
  73. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Investigating Agile Portfolio Management Techniques for Prioritizing Strategic Initiatives in Large-Scale Government IT Projects International Journal of Management & Entrepreneurship Research Fair East Publishers Volume: 7 Issue: 6 Page No: 464-483 https://doi.org/10.51594/ijmer.v7i6.1941
  74. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Mobile Commerce Adoption and Digital Branding Techniques for Startup Growth in Sub-Saharan African Urban Centers International Journal of Management & Entrepreneurship Research Fair East Publishers Volume: 7 Issue: 6 Page No: 443-463 DOI URL: https://doi.org/10.51594/ijmer.v7i6.1940
  75. Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi: https://doi.org/10.32628/IJSRST
  76. Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS Volume 8 Issue 1
  77. Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561
  78. Ononiwu, M., Azonuche, T. I., Okoh, O. F. & Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi: https://doi.org/10.32628/IJSRSET
  79. Perdana, A., Lee, W. E., & Kim, C. M. (2023). Prototyping and implementing Robotic Process Automation in accounting firms: Benefits, challenges and opportunities to audit automation. International journal of accounting information systems51, 100641.
  80. Ramzan, S., & Lokanan, M. (2024). The application of machine learning to study fraud in the accounting literature. Journal of Accounting Literature. https://doi.org/10.1108/JAL-11-2022-0112
  81. Review of Accounting Studies: Is artificial intelligence improving the audit process? (2022). Review of Accounting Studies, 27(3), 938-985. https://doi.org/10.1007/s11142-022-09697-x
  82. Robu, V., Zhang, S., & Farkas, C. (2023). Robust AI for Financial Fraud Detection in the GCC: A Hybrid Framework for Imbalance, Drift, and Adversarial Threats. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 121. https://doi.org/10.3390/jtaer20020121
  83. Robu, V., Zhang, S., & Farkas, C. (2023). Robust AI for Financial Fraud Detection in the GCC: A Hybrid Framework for Imbalance, Drift, and Adversarial Threats. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 121. https://doi.org/10.3390/jtaer20020121
  84. Schreyer, M., Sattarov, T., Borth, D., Dengel, A., & Reimer, B. (2017). Detection of anomalies in large scale accounting data using deep autoencoder networks. arXiv. https://arxiv.org/abs/1709.05254
  85. Temitayo Oluwaseun Jejeniwa, Noluthando Zamanjomane Mhlongo, & Titilola Olaide Jejeniwa. (2024). A comprehensive review of the impact of artificial intelligence on modern accounting practices and financial reporting. Computer Science & IT Research Journal, 5(4), 1031-1047. https://doi.org/10.51594/csitrj.v5i4.1086
  86. The application of machine learning to study fraud in the accounting literature” (Ramzan & Lokanan, 2024) Journal of Accounting Literature. https://doi.org/10.1108/JAL-11-2022-0112
  87. The necessity of AI audit standards boards. (2025). AI & Society. https://doi.org/10.1007/s00146-025-02320-y
  88. Uzoma, E., Igba, E. & Olola, T. M. (2024). Analyzing Edge AI Deployment Challenges within Hybrid IT Systems Utilizing Containerization and Blockchain-Based Data Provenance Solutions.  International Journal of Scientific Research and Modern Technology, 3(12), 125–141. https://doi.org/10.38124/ijsrmt.v3i12.408
  89. Vivek Chandan (2025) https://firmway.in/early-audit-benefits-unlock-accuracy-and-save-time/
  90. Wassie, F. A., & others. (2024). Artificial intelligence and the future of the internal audit function. Humanities and Social Sciences Communications, 11, 1234. https://doi.org/10.1057/s41599-024-02905-w
  91. Yeo, W. J., Okazaki, M., Sato, T., & He, Y. (2025). A comprehensive review on financial explainable AI. Machine Learning, SpringerLink. https://doi.org/10.1007/s10462-024-11077-7

The integration of Artificial Intelligence (AI) into forensic auditing has emerged as a transformative approach to strengthening fraud detection and risk management within global financial institutions. Traditional auditing methods, while effective in retrospective analysis, often lack the speed and adaptability required to detect increasingly complex financial crimes in real time. AI-driven technologies, including machine learning, natural language processing, and predictive analytics, offer advanced capabilities for analyzing large volumes of transactional data, identifying hidden patterns, and uncovering anomalies that may indicate fraudulent activity. This review paper explores the evolving role of AI in forensic auditing, emphasizing its potential to enhance accuracy, efficiency, and timeliness in fraud detection processes. It further examines the practical implications for financial institutions, including improved compliance with regulatory frameworks, enhanced transparency, and proactive risk mitigation. Additionally, the review highlights challenges such as algorithmic bias, data privacy concerns, and the need for skilled professionals to interpret AI-generated insights. By synthesizing current research and industry practices, this paper provides a comprehensive assessment of how AI-enabled forensic auditing can redefine fraud detection and strengthen the resilience of financial systems in an increasingly digitized global economy.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe