The Role of Artificial Intelligence in Predicting and Preventing Outbreaks of Hospital-Acquired Infections


Authors : Ibrahim Ahmed El-Imam; Sunday Ikpe; Mohammed Sani Ibrahim

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/bddwabpv

Scribd : https://tinyurl.com/2wsxjja4

DOI : https://doi.org/10.5281/zenodo.14513182

Abstract : Hospital-acquired infections (HAIs) represent a serious threat to patient safety and the standard of healthcare, leading to increased morbidity, longer hospital stays, and more healthcare costs. With an emphasis on AI methods that recognize infection trends and evaluate risk variables linked to HAIs, this study reviews recent research on the use of AI in predicting and preventing HAI outbreaks. The findings indicate that AI models have a lot of potential for early outbreak identification, with predicted accuracy outperforming conventional statistical techniques. Prompt alerts and actions including AI-driven technologies for real-time monitoring and infection prediction are essential for lowering HAI incidence rates. However, while AI presents valuable opportunities, its effective application will necessitate resolving operational, ethical, and technical issues that may arise.

Keywords : Patient Safety, Digital Health, Technology, Infection Prevention, Disease Control.

References :

  1. Alhumaid, S., Al Mutair, A., Al Alawi, Z., Alsuliman, M., Ahmed, G. Y., Rabaan, A. A., Al-Tawfiq, J. A., & Al-Omari, A. (2021). Knowledge of infection prevention and control among healthcare workers and factors influencing compliance: a systematic review. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-021-00957-0
  2. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, A., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1). https://doi.org/10.1186/ s12909-023-04698-z
  3. Ankolekar A., Eppings L., Bottari, F., Pinho, I. F., Howard, K., Baker, R., Nan, Y., Xing, X., Walsh, S. L., Vos, W., Yang, G., & Philippe Lambin. (2024). Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Computational and Structural Biotechnology Journal, 24, 412–419. https://doi.org/10.1016/j.csbj.2024.05.014
  4. Arzilli, G., De Vita, E., Pasquale, M., Carloni, L. M., Pellegrini, M., Di Giacomo, M., Esposito, E., Porretta, A. D., & Rizzo, C. (2024). Innovative Techniques for Infection Control and Surveillance in Hospital Settings and Long-Term Care Facilities: A Scoping Review. Antibiotics, 13(1), 77. https://doi.org/10.3390/antibiotics13010077
  5. Baddal B, Taner, F., & Ozsahin D. U. (2024). Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics, 14(5), 484–484. https://doi.org/10.3390/diagnostics14050484
  6. Banyai A. D., & Brișan C. (2024). Robotics in Physical Rehabilitation: Systematic Review. Healthcare, 12(17), 1720–1720. https://doi.org/10.3390/healthcare12171720
  7. Browne, K. (2021). Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Applied Microbiology, 1(3), 537–556. https://doi.org/10.3390/applmicrobiol1030035
  8. Cassini, A., Plachouras, D., Eckmanns, T., Abu Sin, M., Blank, H.-P., Ducomble, T., Haller, S., Harder, T., Klingeberg, A., Sixtensson, M., Velasco, E., Weiß, B., Kramarz, P., Monnet, D. L., Kretzschmar, M. E., & Suetens, C. (2016). Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLOS Medicine, 13(10), e1002150. https://doi.org/10.1371/journal.pmed.1002150
  9. Chakravarthy, S. S., & Sowmya K S. (2024). Application of Natural Language Processing for Creating Chatbots in Healthcare. International Journal of Research Publication and Reviews, 5(1), 1472–1481. https://doi.org/10.55248/gengpi.5.0124. 0212
  10. Cusumano-Towner, M., Li, D. Y., Tuo, S., Krishnan, G., & Maslove, D. M. (2013). A social network of hospital acquired infection built from electronic medical record data. Journal of the American Medical Informatics Association, 20(3), 427–434. https://doi.org/10.1136/amiajnl-2012-001401
  11. Dadi, N. C. T., Radochová, B., Vargová, J., & Bujdáková, H. (2021). Impact of Healthcare-Associated Infections Connected to Medical Devices—An Update. Microorganisms, 9(11), 2332. https://doi.org/10.3390/microorganisms9112332
  12. Deo, N., & Anjankar, A. (2023). Artificial Intelligence With Robotics in Healthcare: A Narrative Review of Its Viability in India. Artificial Intelligence with Robotics in Healthcare: A Narrative Review of Its Viability in India, 15(5). https://doi.org/10.7759/ cureus.39416
  13. Doll, M., Stevens, M., & Bearman, G. (2018). Environmental cleaning and disinfection of patient areas. International Journal of Infectious Diseases, 67(67), 52–57. https://doi.org/10.1016/j.ijid.2017. 10.014
  14. Fitzpatrick, F., Doherty, A., & Lacey, G. (2020). Using Artificial Intelligence in Infection Prevention. Current Treatment Options in Infectious Diseases, 12(2). https://doi.org/10.1007/s40506-020-00216-7
  15. Fragapane, G., Hvolby, H.-H., Sgarbossa, F., & Strandhagen, J. O. (2021). Autonomous mobile robots in sterile instrument logistics: an evaluation of the material handling system for a strategic fit framework. Production Planning & Control, 1–15. https://doi.org/10.1080/09537287.2021.1884914
  16. Gall, E., Long, A., & Hall, K. K. (2020). Infections Due to Other Multidrug-Resistant Organisms. In www.ncbi.nlm.nih.gov. Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK555533/
  17. Garcia, R., Barnes, S., Boukidjian, R., Goss, L. K., Spencer, M., Septimus, E. J., Wright, M.-O., Munro, S., Reese, S. M., Fakih, M. G., Edmiston, C. E., & Levesque, M. (2022). Recommendations for change in infection prevention programs and practice. American Journal of Infection Control, 50(12). https://doi.org/10.1016/j.ajic.2022.04.007
  18. Gould, D. J., Moralejo, D., Drey, N., Chudleigh, J. H., & Taljaard, M. (2017). Interventions to Improve Hand Hygiene Compliance in Patient Care. Cochrane Database of Systematic Reviews, 9(9). https://doi.org/10.1002/14651858.cd005186.pub4
  19. Haque, M., Sartelli, M., McKimm, J., & Abu Bakar, M. B. (2020). Health care-associated Infections – an Overview. Infection and Drug Resistance, Volume 11(11), 2321–2333. https://doi.org/10.2147/IDR.S177247
  20. Harris, D. R., Eisinger, C., Wang, Y., & Delcher, C. (2020). Challenges and Barriers in Applying Natural Language Processing to Medical Examiner Notes from Fatal Opioid Poisoning Cases. PubMed Central. https://doi.org/10.1109/bigdata50022.2020.9378443
  21. Haviari, S., Bénet, T., Saadatian-Elahi, M., André, P., Loulergue, P., & Vanhems, P. (2015). Vaccination of healthcare workers: A review. Human Vaccines & Immunotherapeutics, 11(11), 2522–2537. https://doi.org/10.1080/21645515.2015.1082014
  22. Honda, H., & Iwata, K. (2016). Personal protective equipment and improving compliance among healthcare workers in high-risk settings. Current Opinion in Infectious Diseases, 29(4), 400–406. https://doi.org/10.1097/qco.0000000000000280
  23. Hossain, E., Rana, R., Higgins, N., Soar, J., Barua, P. D., Pisani, A. R., & Turner, K. (2023). Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review. Computers in Biology and Medicine, 155, 106649. https://doi.org/10.1016/j.compbiomed.2023.106649
  24. Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Rab, S. (2022). Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3(2), 58–73. https://doi.org/10.1016/j.ijin.2022.05.002
  25. Khaleel, M., Jebrel A., & Shwehdy, D. M. (2024). Artificial Intelligence in Computer Science. ResearchGate, 2(2), 1–21. https://www.researchgate.net/publication/379459835_Artificial_Intelligence_in_Computer_Science
  26. Khalifa, M., & Albadawy, M. (2024). AI in Diagnostic Imaging: Revolutionising Accuracy and Efficiency. Computer Methods and Programs in Biomedicine Update, 5, 100146–100146. https://doi.org/10.1016/j.cmpbup.2024.100146
  27. Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478–482. https://doi.org/10.1016/j.apjtb.2017.01.019
  28. Lemmen, S. W., & Lewalter, K. (2018). Antibiotic stewardship and horizontal infection control are more effective than screening, isolation and eradication. Infection, 46(5), 581–590. https://doi.org/10.1007/s15010-018-1137-1
  29. Li, B. Y., Oh, J., Young, V. B., Rao, K., & Wiens, J. (2019). Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection. Open Forum Infectious Diseases, 6(5). https://doi.org/10.1093/ofid/ofz186
  30. Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms. Frontiers in Public Health, 11(1273253). https://doi.org/10.3389/fpubh.2023.1273253
  31. Li, Z., Meng, F., Wu, B., Kong, D., Geng, M., Qiu, X., Cao, Z., Li, T., Su, Y., & Liu, S. (2024). Reviewing the progress of infectious disease early warning systems and planning for the future. BMC Public Health, 24(1). https://doi.org/10.1186/s12889-024-20537-2
  32. Manchanda, V., Suman, U., & Singh, N. (2018). Implementing Infection Prevention and Control Programs When Resources Are Limited. Current Treatment Options in Infectious Diseases, 10(1), 28–39. https://doi.org/10.1007/s40506-018-0142-3
  33. Murray, J., & Cohen, A. L. (2017). Infectious Disease Surveillance. International Encyclopedia of Public Health, PMC7149515(PMC7149515), 222–229. https://doi.org/10.1016/B978-0-12-803678-5.00517-8
  34. Nasteski, V. (2017). An overview of the supervised machine learning methods. HORIZONS.B, 4, 51–62. https://doi.org/10.20544/horizons.b.04.1.17.p05
  35. Oh, J., Makar, M., Fusco, C., McCaffrey, R., Rao, K., Ryan, E. E., Washer, L., West, L. R., Young, V. B., Guttag, J., Hooper, D. C., Shenoy, E. S., & Wiens, J. (2018). A Generalizable, Data-Driven Approach to Predict Daily Risk ofClostridium difficileInfection at Two Large Academic Health Centers. Infection Control & Hospital Epidemiology, 39(4), 425–433. https://doi.org/10.1017/ice.2018.16
  36. Olaboye, J. A., Maha, C. C., Kolawole, T. O., & Abdul, S. (2024). Innovations in real-time infectious disease surveillance using AI and mobile data. International Medical Science Research Journal, 4(6), 647–667. https://doi.org/10.51594/imsrj.v4i6.1190
  37. Pavithra, N., & Afza, N. (2022). Issues And Challenges In Adopting Robotics In Healthcare-A Conceptual Study. Journal of Positive School Psychology, 6(8), 4266–4270.
  38. Prachi Gurav. (2024). Natural language processing in electronic health records: A review. AccScience Publishing, 1(1), 2147–2147. https://doi.org/10.36922/aih.2147
  39. Qureshi, R., Irfan, M., Gondal, T. M., Khan, S., Wu, J., Hadi, M. U., Heymach, J., Le, X., Yan, H., & Alam, T. (2023). AI in drug discovery and its clinical relevance. Heliyon, 9(7), e17575–e17575. https://doi.org/10.1016/j.heliyon.2023.e17575
  40. Rahmani, A., Namazi Shabestari, A., Sadeh, M., Bidaki, R., Jamalimoghadamsiahkli, S., & Vahabi, Z. (2021). Frequency of Healthcare-Associated Infections in the Elderly Patient Hospitalized. Elderly Health Journal. https://doi.org/10.18502/ehj.v7i1.6548
  41. Rajat, M. S., & Chattu, V. K. (2021). A Review of Artificial Intelligence, Big Data, and Blockchain Technology Applications in Medicine and Global Health. Big Data and Cognitive Computing, 5(3), 41. https://doi.org/10.3390/bdcc5030041
  42. Ramos, C. R., Roque, L. A., Sarmiento, D. B., Enrico, L., Sunio, T. P., Tabungar, I. B., Susan, G., Rio, P. C., & Hilario, A. L. (2020). Use of ultraviolet-C in environmental sterilization in hospitals: A systematic review on efficacy and safety. International Journal of Health Sciences, 14(6), 52. https://pmc.ncbi.nlm.nih.gov/articles/PMC7644456/
  43. Reddy, K., Gharde, P., Tayade, H., Patil, M., Reddy, L. S., Surya, D., Reddy, K., Gharde, P., Tayade, H., Patil, M., Reddy, L. srivani, & Jr, D. S. (2023). Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus, 15(12). https://doi.org/10.7759/cureus.50415
  44. Rivero-Moreno, Y., Echevarria, S., Vidal-Valderrama, C., Pianetti, L., Cordova-Guilarte, J., Navarro-Gonzalez, J., Acevedo-Rodríguez, J., Dorado-Avila, G., Osorio-Romero, L., Chavez-Campos, C., Acero-Alvarracín, K., Rivero, Y., Echevarria, S., Vidal-Valderrama, C., Pianetti, L., Guilarte, J. C., Navarro-Gonzalez, J., Acevedo-Rodríguez, J., Avila, G. L. D., & Osorio-Romero, L. (2023). Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus, 15(7). https://doi.org/10.7759/cureus.42370
  45. Rutala, W. A., & Weber, D. J. (2016). Disinfection and Sterilization in Health Care Facilities. Infectious Disease Clinics of North America, 30(3), 609–637. https://doi.org/10.1016/j.idc.2016.04.002
  46. Sarella, P. N. K. (2024). AI-Driven Natural Language Processing in Healthcare: Transforming Patient-Provider Communication. Indian Journal of Pharmacy Practice, 17(1), 21–26. https://doi.org/10.5530/ijopp.17.1.4
  47. Scardoni, A., Balzarini, F., Signorelli, C., Cabitza, F., & Odone, A. (2020). Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature. Journal of Infection and Public Health, 13(8), 1061–1077. https://doi.org/10.1016/j.jiph.2020.06.006
  48. Shastry, K. A., & Shastry, A. (2023). An integrated deep learning and natural language processing approach for continuous remote monitoring in digital health. Decision Analytics Journal, 8, 100301. https://doi.org/10.1016/j.dajour.2023.100301
  49. Simor, A. E. (2010). Diagnosis, Management, and Prevention of Clostridium difficile Infection in Long-Term Care Facilities: A Review. Journal of the American Geriatrics Society, 58(8), 1556–1564. https://doi.org/10.1111/j.1532-5415.2010.02958.x
  50. Takale, D. G. (2024). A Study of Natural Language Processing in Healthcare Industries. https://www.researchgate.net/publication/378968750_A_Study_of_Natural_Language_Processing_in_Healthcare_Industries
  51. Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91–91. Mdpi. https://doi.org/10.3390/computers12050091
  52. Toney-Butler, T. J., Carver, N., & Gasner, A. (2023). Hand hygiene. National Library of Medicine; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK470254/
  53. Tsvetanov F. (2024). Integrating AI Technologies into Remote Monitoring Patient Systems. Engineering Proceedings, 37(1), 54. https://doi.org/10.3390/engproc2024070054
  54. Verbeek, J. H., Rajamaki, B., Ijaz, S., Sauni, R., Toomey, E., Blackwood, B., Tikka, C., Ruotsalainen, J. H., & Kilinc Balci, F. S. (2020). Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database of Systematic Reviews, 5. https://doi.org/10.1002/14651858.cd011621.pub5
  55. Wang, C., Jiang, W., Yang, K., Yu, D., Newn, J., Sarsenbayeva, Z., Goncalves, J., & Kostakos, V. (2021). Electronic Monitoring Systems for Hand Hygiene: Systematic Review of Technology. Journal of Medical Internet Research, 23(11). https://doi.org/10.2196/27880
  56. World Health Organization. (2022, May 6). WHO launches first ever global report on infection prevention and control. Www.who.int. https://www.who.int/news/item/06-05-2022-who-launches-first-ever-global-report-on-infection-prevention-and-control
  57. Zhao, A. P., Li, S., Cao, Z., Hu, P. J.-H., Wang, J., Xiang, Y., Xie, D., & Lu, X. (2024). AI for Science: Predicting Infectious Diseases. Journal of Safety Science and Resilience, 5(2). https://doi.org/10.1016/j.jnlssr.2024.02.002

Hospital-acquired infections (HAIs) represent a serious threat to patient safety and the standard of healthcare, leading to increased morbidity, longer hospital stays, and more healthcare costs. With an emphasis on AI methods that recognize infection trends and evaluate risk variables linked to HAIs, this study reviews recent research on the use of AI in predicting and preventing HAI outbreaks. The findings indicate that AI models have a lot of potential for early outbreak identification, with predicted accuracy outperforming conventional statistical techniques. Prompt alerts and actions including AI-driven technologies for real-time monitoring and infection prediction are essential for lowering HAI incidence rates. However, while AI presents valuable opportunities, its effective application will necessitate resolving operational, ethical, and technical issues that may arise.

Keywords : Patient Safety, Digital Health, Technology, Infection Prevention, Disease Control.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe