The Role of Mitochondria in the Development of Nervous System Diseases and Mental Disorders


Authors : Hala Deeb; V. N. Perfilova

Volume/Issue : Volume 9 - 2024, Issue 6 - June


Google Scholar : https://tinyurl.com/3p5mcudk

Scribd : https://tinyurl.com/27vanpkp

DOI : https://doi.org/10.38124/ijisrt/IJISRT24JUN897

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The review analyzed articles from the Pub- Med database mainly from the last 10 years, indicating the role of mitochondria in the development of diseases of the central nervous system and mental disorders. Mu- tations in mitochondrial/nuclear DNA genes, oxidative stress, impaired redox mechanisms, and regulation of mitochondrial dynamics have been found to cause mito- chondrial dysfunction. At the same time, the permeabil- ity of mitochondrial membranes changes, the influx of calcium ions increases, as a result of which the mem- brane potential shifts, oxidation processes become more intense, a large number of reactive oxygen species are formed, oxidative phosphorylation is disrupted, and the process of neuronal apoptosis starts. Mitochondrial dys- function is a common pathogenetic mechanism of Alz- heimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's chorea, epilepsy, schizophrenia, etc. Discoveries and advances in molecular genetics have increased our understanding of the early pathology of mitochondrial disorders, enabled disease modeling, and provided entirely new perspectives on molecular pathogenesis. It is necessary that this research continues and then, in the near future, it will help develop the search for possible ways to treat the diseases that people suffer from.

Keywords : Mitochondrial Dysfunction, Neurodegenerative And Mental Diseases, Mtdna Mutations, Oxidative Stress.

References :

  1. Ikon N, Ryan RO (2017) Cardiolipin and mitochondrial cristae organization. Biochim Biophys Acta 1859(6):1156-1163. https://doi.org/10.1016/j.bbamem.2017.03.013
  2. 2. Kunji ER, Aleksandrova A, King MS, Majd H, Ashton VL, Cerson E, Springett R, Kibalchenko M, Tavoulari S, Crichton PG, Ruprecht JJ (2016) The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1863(10):2379-2393. https://doi.org/10.1016/j.bbamcr.2016.03.015
  3. Wakatsuki S Furuno A, Ohshima M, Araki T (2015) Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J Cell Biol 211(4):881-896.  https://doi.org/10.1083/jcb.201506102
  4. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566-578. https://doi.org/10.1038/nrm3412
  5. Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer's disease. J Alzheimers Dis 57(4):1087-1103. https://doi.org/10.3233/jad-160726
  6. Патрушев МВ, Мазунин ИО, Виноградова ЕН, Каменский ПА (2015) Слияние и деление митохондрий. Биохимия 80(11): 1673–1682. [Patrushev MV, Mazunin IO, Vinogradova EN, Kamensky PA (2015) Sliyanie i delenie mitohondrij [Fusion and division of mitochondria (review)]. Biochemistry 80 (11): 1673-1682. (In Russ.)].https://doi.org/10.1134/S0006297915110061
  7. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MdM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22(3): 401–412. https://doi.org/10.1038/s41593-018-0332-9
  8. Ashrafian H, Zadeh EH, Khan RH (2021) Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol. 167:382-394. https://doi.org/10.1016/j.ijbiomac.2020.11.192 .
  9. Tobore TO (2019) On the central role of mitochondria dysfunction and oxidative stress in Alzheimer's disease. Neurol Sci 40(8):1527-1540. https://doi.org/10.1007/s10072-019-03863-x.
  10. Swerdlowa RH (2020) The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease. Int Rev Neurobiol. 154:207-233. https://doi.org/10.1016/bs.irn.2020.01.008
  11. Yu-Wai-Man P, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162-169.
  12. Wu SB, Ma YS, Wu YT, Chen YC, Wei YH (2010) Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Molecular Neurobiology 41(2-3):256-266. https://doi.org/ 10.1007/s12035-010-8123-7
  13. Chuang YC, Liou CW, Chen SD, Wang PW, Chuang JH, Tiao MM, Hsu TY, Lin HY, Lin TK (2017) Mitochondrial transfer from Wharton's Jelly Mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid Med Cell Longev 2017:1-22. https://doi.org/10.1155/2017/5691215
  14. Djordjevic D, Brady L, Bai R, Tarnopolsky MA (2016) Two novel mitochondrial tRNA mutations, A7495G (tRNASer(UCN)) and C5577T (tRNATrp), are associated with seizures and cardiac dysfunction. Mitochondrion 31:40-44. https://doi.org/ 10.1016/j.mito.2016.09.002
  15. Satogami K, Takahashi S, Kose A, Shinosaki K (2017) Schizophrenia-like symptoms in a patient with Leigh syndrome. Asian J Psychiatr 25:249-250. https://doi.org/ 10.1016/j.ajp.2016.12.012
  16. Washizuka S, Kametani M, Sasaki T, Tochigi M, Umekage T, Kohda K, Kato T (2006) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 141B(3):301-304. https://doi.org/10.1002 /ajmg.b.30285
  17. Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15(2):200-205. https://doi.org/10.1038/nm.1907
  18. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Federico A, Minetti C, Moggio M, Mongini T, Tonin P, Toscano A, Bruno C, Ienco EC, Filosto M, Lamperti C, Diodato D, Moroni I, Musumeci O, Pegoraro E, Spinazzi M, Ahmed N, Sciacco M, Vercelli L, Ardissone A, Zeviani M, Siciliano G (2016) "Mitochondrial neuropathies": A survey from the large cohort of the Italian Network. Neuromuscul Disord 26(4-5):272-276. https://doi.org/10.1016/j.nmd.2016.02.008
  19. Zhou ZD, Saw WT, Tan EK (2017) Mitochondrial CHCHD-Containing proteins: physiologic functions and link with neurodegenerative diseases. Mol Neurobiol 54(7):5534-5546. https://doi.org/10.1007/s12035-016-0099-5
  20. Shulyakova N, Andreazza AC, Mills LR, Eubanks JH (2017) Mitochondrial dysfunction in the pathogenesis of Rett syndrome: implications for mitochondria-targeted therapies. Front Cell Neurosci 11:58. https://doi.org/10.3389/fncel.2017.00058
  21. Бобылова МЮ, Иванова ИВ, Некрасова ИВ, Пылаева ОА, Мухин КЮ, Холин АА, Ильина ЕкС, Куликов АВ, Ильина ЕлС, Нестеровский ЮЕ (2017) Особенности течения и развития эпилепсии у детей с типичным вариантом синдрома Ретта, вызванного мутацией. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски 117(11‑2):54‑61. [Bobylova MIu, Ivanova IV, Nekrasova IV, Pylaeva OA, Mukhin KIu, Kholin AA, Iljina EkS, Kulikov AV, Iljina ElS, Nesterovsky YuE (2017) Osobennosti techeniya i razvitiya epilepsii u detej s tipichnym variantom sindroma Retta, vyzvannogo mutaciej [The course and the development of epilepsy in patients with typical variant of Rett syndrome and mutations]. S.S. Korsakov Journal of Neurology and Psychiatry 117(11‑2):54‑61. (In Russ.)]. https://doi.org/10.17116/jnevro201711711254-61
  22. Huang ML-H, Chiang S, Kalinowski DS, Bae D-H, Sahni S, Richardson DR (2019) The Role of the An-tioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Anti-oxidant Defense, Autophagy, and Apoptosis. Oxid Med Cell Longev 7;2019:6392763. https://doi.org/10.1155/2019/6392763
  23. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schröder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449-451. https://doi.org/10.1038/ng1341
  24. Fahrner JA, Liu R, Perry MS, Klein J, Chan DC (2016) A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A 170(8):2002-2011. https://doi.org/10.1002/ajmg.a.37721
  25. Fahrner MS, Takihara Y, Kim KY, Iwata T, Yue BY, Inatani M, Weinreb RN, Perkins GA, Ju WK (2016) Mitochondrial pathogenic mechanism and degradation in optineurin E50K mutation-mediated retinal ganglion cell degeneration. Sci Rep 6(1):33830. https://doi.org/10.1038/srep33830
  26. Magrane J, Cortez C, Gan WB, Manfredi G (2014) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413-1424. https://doi.org/10.1093/hmg/ddt528
  27. Zhang F, Wang W, Siedlak SL, Liu Y, Liu J, Jiang K, Perry G, Zhu X, Wang X (2015) Miro1 deficiency in amyotrophic lateral sclerosis. Front Aging Neurosci 7:100. https://doi.org/10.3389/fnagi.2015.00100
  28. Бунеева ОА, Медведев АЕ (2011) Нарушение функций митохондрий при болезни Паркинсона. Биомедицинская химия 57(3): 246-281. [Buneeva OA, Medvedev AE (2011) Narushenie funkcij mitohondrij pri bolezni Parkinsona [Dysfunction of mitochondria in Parkinson's disease]. Biomed chemistry 57 (3): 246-281. (In Russ.)]. https://doi.org/10.18097/PBMC20115703246
  29. Шадрина МИ, Сломинский ПА (2008) Значение митохондриальной дисфункции и окислительных повреждений в молекулярной патологии болезни Паркинсона. Молекулярная биология 42(5): 809-819. [Shadrina MI, Slominsky PA (2008) Znachenie mitohondrial'noj disfunkcii i okislitel'nyh povrezhdenij v molekulyarnoj patologii bolezni Parkinsona [Significance of mitochondrial dysfunction and oxidative damage in the molecular pathology of Parkinson's disease]. Molek biol 42(5): 809-819. (In Russ.)]. https://doi.org/10.1134/S0026893308050099
  30. Таппахов АА, Попова ТЕ, Николаева ТЯ, Гурьева ПИ, Шнайдер НА, Петрова ММ, Сапронова МР (2017) Генетическая основа болезни Паркинсона. Неврология, нейропсихиатрия, психосоматика 9(1):96–100. [Tappakhov AA, Popova TE, Nikolaeva TYa, Gurieva PI, Schneider NA, Petrova MM, Sapronova MR (2017) Geneticheskaya osnova bolezni Parkinsona. [The genetic basis of Parkinson's disease]. Neurology, neuropsychiatry, psychosomatics 9(1):96–100. (In Russ.)]. https://doi.org/10.14412/2074-2711-2017-1-96-100
  31. Janssen W, Quaegebeur A, Van Goethem G, Ann L, Smets K, Vandenberghe R, Van Paesschen W (2016) The spectrum of epilepsy caused by POLG mutations. Acta Neurol Belg 116(1):17-25. https://doi.org/10.1007/s13760-015-0499-8
  32. Vilardo E, Rossmanith W (2015) Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res 43(13):6649. https://doi.org/10.1093/nar/gkv658
  33. Rosário M, Moldovan O, Reimão S, Chendo I, Crawford J, Rosa M, Guedes L (2018) Juvenile parkinsonism associated with a novel HSD17B10 mutation in a patient with HSD10 disease [abstract]. Mov Disord 33 (suppl 2). https://www.mdsabstracts.org/abstract/juvenile-parkinsonism-associated-with-a-novel-hsd17b10-mutation-in-a-patient-with-hsd10-disease/.
  34. John A, Reddy PH (2021) Synaptic Basis of Alzheimer’s Disease: Focus on Synaptic Amyloid Beta, P-Tau and Mitochondria Ageing Res Rev 65: 101208. https://doi.org/10.1016/j.arr.2020.101208
  35. Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, Kumar S, Vijayan M, Reddy AP, Reddy PH (2021) Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med 20;172:652-667. https://doi.org/10.1016/j.freeradbiomed.2021.07.013.
  36. Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegeneration 15(30). https://doi.org/10.1186/s13024-020-00376-6
  37. Faizi M, Seydi E, Abarghuyi S, Salimi A, Nasoohi S, Pourahmad J (2016) A search for mitochondrial damage in Alzheimer's disease using isolated rat brain mitochondria. Iran J Pharm Res 15(Suppl):185-195.
  38. Судаков НП, Бывальцев ВА, Никифоров СБ, Сороковиков ВА, Клименков ИВ, Константинов ЮМ (2010) Дисфункция митохондрий при нейродегенеративных заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова 110(9):87‑91. [Sudakov N.P, Byval'tsev VA, Nikiforov SB, Sorokovikov VA, Klimenkov IV, Konstantinov IuM (2010) Mitochondrial dysfunction in neurodegenerative diseases [Disfunkciya mitohondrij pri nejrodegenerativnyh zabolevaniyah]. S.S. Korsakov Journal of Neurology and Psychiatry 110(9):87‑91. (In Russ.)].
  39. Bennett JPJr, Keeney PM (2020) Alzheimer's and Parkinson's brain tissues have reduced expression of genes for mtDNA OXPHOS Proteins, mitobiogenesis regulator PGC-1α protein and mtRNA stabilizing protein LRPPRC (LRP130). Mitochondrion 53:154-157. https://doi.org/10.1016/j.mito.2020.05.012 .
  40. Guo L, Tian J, Du H (2017) Mitochondrial dysfunction and synaptic transmission failure in Alzheimer's disease. J Alzheimers Dis 57(4):1071-1086. https://doi.org/10.3233/ jad-160702
  41. Cai Q, Jeong YY (2020) Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases. Cells 9(1): 150. https://doi.org/10.3390/cells9010150
  42. Pradeepkiran JA, Reddy PH (2020) Defective Mitophagy in Alzheimer’s Disease. Ageing Res Rev 64: 101191. https://doi.org/10.1016/j.arr.2020.101191
  43. Gowda P, Reddy PH, Kumar S (2022) Deregulated mitochondrial microRNAs in Alzheimer’s disease: Focus on synapse and mitochondria. Ageing Res Rev 73: 101529. https://doi.org/10.1016/j.arr.2021.101529
  44. Zhang R, Zhou H, Jiang L, Mao Y, Cui X, Xie B, Cui D, Wang H, Zhang Q, Xu S (2016) MiR-195 dependent roles of mitofusin2 in the mitochondrial dysfunction of hippocampal neurons in SAMP8 mice. Brain Res 1652: 135–143.https://doi.org/10.1016/j.brainres.2016.09.047
  45. Kim YJ, Kim SH, Park Y, Park J, Lee JH, Kim BC, Song WK (2020) miR-16-5p is upregulated by amyloid beta deposition in Alzheimer’s disease models and induces neuronal cell apoptosis through direct targeting and suppression of BCL-2. Exp Gerontol 136: 110954. https://doi.org/10.1016/j.exger.2020.110954
  46. Kumar S, Morton H, Sawant N, Orlov E, Bunquin LE, Pradeepkiran JA, Alvir R, Reddy PH (2021) MicroRNA-455-3p improves synaptic, cognitive functions and extends lifespan: Relevance to Alzheimer's disease. Redox Biol 48:102182. https://doi.org/10.1016/j.redox.2021.102182
  47. Di Rita A, Maiorino T, Bruqi K, Volpicelli F, Bellenchi GC, Strappazzon F (2020) miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase. Int J Mol Sci 21(1):355. https://doi.org/10.3390/ijms21010355
  48. Ashleigh T, Swerdlow RH, Flint Beal M (2023) The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimers Dement 19(1):333-342. https://doi.org/10.1002/alz.12683
  49. Beck JS, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer's disease. Curr Alzheimer Res 13(6):610-614. https://doi.org/10.2174/1567205 013666151221145445
  50. Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem 261:7585-7587.
  51. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ (2014) A mitocentric view of Parkinson's disease. Annu Rev Neurosci 37(1):137-159. https://doi.org/10.1146/annurev-neuro-071013-014317
  52. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L, Kaplitt MG, López-Barneo J, Schumacker PT, Surmeier DJ (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599(7886):650-656.https://doi.org/10.1038/s41586-021-04059-0
  53. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524-14529. https://doi.org/10.1073 /pnas.172514599
  54. Gatt AP, Duncan OF, Attems J, Francis PT, Ballard CG, Bateman JM (2016) Dementia in Parkinson's disease is associated with enhanced mitochondrial complex I deficiency. Mov Disord 31(3):352-359. https://doi.org/10.1002/mds.26513
  55. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089-9100. https://doi.org/10.1074/jbc.m710012200
  56. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29(20):3571-3589. https://doi.org/10.1038/emboj.2010. 223
  57. Erustes AG, D'Eletto M, Guarache GC, Ureshino RP, Bincoletto C, da Silva Pereira GJ, Piacentini M, Smaili SS (2021) Overexpression of α-synuclein inhibits mitochondrial Ca2+ trafficking between the endoplasmic reticulum and mitochondria through MAMs by altering the GRP75-IP3R interaction. J Neurosci Res. 99(11):2932-2947. https://doi.org/10.1002/jnr.24952
  58. Guardia-Laguarta C, Area-Gomez E, Rüb C, Liu Y, Magrané J, Becker D, Voos W, Schon EA, Przedborski S (2014) α-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34(1):249-259.  https://doi.org/10.1523/jneurosci.2507-13.2014
  59. Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, Zharkovsky A, Kaasik A (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286(12):10814-10824. https://doi.org/ 10.1074/jbc.m110.132514
  60. Weil R, Laplantine E, Curic S, Génin P (2018) Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer. Front Immunol 19;9:1243. https://doi.org/10.3389/fimmu.2018.01243
  61. Kumar M, Acevedo-Cintrón J, Jhaldiyal A, Wang H, Andrabi S A, Eacker S, Karuppagounder SS, Brahmachari S, Chen R, Kim H, Ko HS, Dawson VL, Dawson TM (2020) Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons 15(3): 629-645. https://doi.org/10.1016/j.stemcr.2020.07.013
  62. Tokarew JM, El-Kodsi DN, Lengacher NA, Fehr TK, Nguyen AP, Shutinoski B, O'Nuallain B, Jin M, Khan JM, Ng ACH, Li J, Jiang Q, Zhang M, Wang L, Sengupta R, Barber KR, Tran A, Im DS, Callaghan S, Park DS, Zandee S, Dong X, Scherzer CR, Prat A, Tsai EC, Takanashi M, Hattori N, Chan JA, Zecca L, West AB, Holmgren A, Puente L, Shaw GS, Toth G, Woulfe JM, Taylor P, Tomlinson JJ, Schlossmacher MG (2021) Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathol 141(5):725-754. https://doi.org/10.1007/s00401-021-02285-4
  63. Julayanont P, McFarland NR, Heilman KM (2020) Mild cognitive impairment and dementia in motor manifest Huntington's disease: Classification and prevalence. J Neurol Sci 408:116523. https://doi.org/10.1016/j.jns.2019.116523
  64. Shi G, McQuibban GA (2017) The mitochondrial rhomboid protease PARL Is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep 18(6):1458-1472. https://doi.org/10.1016/j.celrep.2017.01.029
  65. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 39(3):385-389. https://doi.org/10.1002/ana.410390317
  66. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Quintanilla RA, Johnson GVW (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80(4-5):242-247. https://doi.org/10.1016/j.brainresbull. 2009.07.010
  67. Guedes-Dias P, de Proenca J, Soares TR, Leitao-Rocha A, Pinho BR, Duchen MR, Oliveira JM (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852(11):2484-2493. https://doi.org/10.1016/ j.bbadis.2015.08.012
  68. Xiang Z, Krainc D (2013) Pharmacological upregulation of PGC1α in oligodendrocytes: implications for Huntington's disease. J Huntingtons Dis 2(1):101-105. https://doi. org/10.3233/JHD-130046
  69. Neueder A, Kojer K, Gu Z, Wang Y, Hering T, Tabrizi S, Taanman J-W, Orth M (2024) Huntington disease affects mitochondrial network dynamics predisposing to pathogenic mtDNA mutations. Brain awae007. https://doi.org/10.1093/brain/awae007
  70. Hwang S, Disatnik MH, Mochly-Rosen D (2015) Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med 7(10):1307-1326. https://doi.org/10.15252/emmm.201505256
  71. Wang Y, Guo X, Ye K (2021) Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington’s disease. PNAS 118(30); e2014610118. https://doi.org/10.1073/pnas.2014610118
  72. Gizatullina ZZ, Lindenberg KS, Harjes P, Chen Y, Kosinski CM, Landwehrmeyer BG, Ludolph AC, Striggow F, Zierz S, Gellerich FN (2006) Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice. Ann Neurol 59(2):407-411. https://doi. org/10.1002/ana.207541
  73. Delic V, Kurien C, Cruz J, Zivkovic S, Barretta J, Thomson A, Hennessey D, Joseph J, Ehrhart J, Willing AE, Bradshaw P, Garbuzova-Davis S (2018) Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. J Neurosci Res 96(8):1353-1366. https://doi.org/10.1002/jnr.24249
  74. Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E (2015) Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol 262(6):1493-1503. https://doi.org/10.1007/s00415-015-7737-0
  75. Bartolome F, Esteras N, Martin-Requero A, Boutoleau-Bretonniere C, Vercelletto M, Gabelle A, Le Ber I, Honda T, Dinkova-Kostova AT, Hardy J, Carro E, Abramov AY (2017) Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci Rep 7(1):1666. https://doi.org/10.1038/s41598-017-01678-4
  76. Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J (2018) ROSRelated Mitochondrial Dysfunction in Skeletal Muscle of an ALS Mouse Model During the Disease Progression. Pharmacological Research 138. https://doi.org/10.1016/j.phrs.2018.09.008 .
  77. Sharma A, Varghese AM, Vijaylakshmi K, Sumitha R, Prasanna VK, Shruthi S, Chandrasekhar Sagar BK, Datta KK, Gowda H, Nalini A, Alladi PA, Christopher R, Sathyaprabha TN, Raju TR, Srinivas Bharath MM (2016) Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces mitochondrial and lysosomal dysfunction. Neurochem Res 41(5):965-984. https://doi.org/10.1007/s11064-015-1779-7
  78. Fukunaga K, Shinoda Y, Tagashira H (2015) The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci 127(1):36-41. https://doi.org/10.1016/j.jphs.2014.12.012
  79. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, Zheng Y, Diffenderfer KE, Zhang J, Soltani S, Eames T, Schafer ST, Boyer L, Marchetto MC, Nurnberger JI, Calabrese JR, Oedegaard KJ, McCarthy MJ, Zandi PP, Alda M, Nievergelt CM (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527(7576):95-99. https://doi.org/10.1038/nature15526
  80. Akarsu S, Torun D, Erdem M, Kozan S, Akar H, Uzun O (2015) Mitochondrial complex I and III mRNA levels in bipolar disorder. J Affect Disord 184:160-163. https://doi.org/10.1016/j.jad.2015.05.060
  81. Scaini G, Fries GR, Valvassori SS, Zeni CP, Zunta-Soares G, Berk M, Soares JC, Quevedo J (2017) Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry 7(5):e1111. https://doi.org/10.1038/tp.2017.83
  82. Faizi M, Salimi A, Rasoulzadeh M, Naserzadeh P, Pourahmad J (2014) Schizophrenia induces oxidative stress and cytochrome C release in isolated rat brain mitochondria: a possible pathway for induction of apoptosis and neurodegeneration. Iran J Pharm Res 13(Suppl):93-100. https://doi.org/10.1016 /j.neubiorev.2014.11.005
  83. Kolomeez NS, Uranova NA (1999) Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci Behav Physiol 29(2):217-221. https://doi.org/10.1007/bf02465329
  84. Torrell H, Alonso Y, Garrabou G, Mulet D, Catalán M, Valiente-Pallejà A, Carreño-Gago L, García-Arumí E, Montaña E, Vilella E, Martorell L (2017) Mitochondrial dysfunction in a family with psychosis and chronic fatigue syndrome. Mitochondrion 34:1-8.  https://doi.org/10.1016/j.mito.2016.10.007
  85. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neuroscience & Biobehavioral Reviews 48: 10-21. https://doi.org/10.1016/j.neubiorev.2014.11.005
  86. Atkin TA, Brandon NJ, Kittler JT (2012) Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Hum Mol Genetics 21(9):2017-2028. https://doi.org/10.1093/hmg/dds018
  87. Rossignol DA, Frye RE (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17(3):290-314. https://doi. org/10.1038/mp.2010.136
  88. Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117(2): 209-220. https://doi.org/10.1111/j.1471-4159.2011.07189.x
  89. Tang G, Gutierrez Rios P, Kuo SH, Akman HO, Rosoklija G. Tanji K, Dwork A, Schon EA, Dimauro S, Goldman J, Sulzer D (2013) Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 54:349-361. https://doi.org/10.1016/j.nbd.2013.01.006
  90. .Filipek PA, Juranek J, Smith M, Mays LZ, Ramos ER, Bocian M, Masser-Frye D, Laulhere TM, Modahl C, Spence MA, Gargus JJ (2003) Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol 53(6):801-804. https://doi.org/10.1002/ ana.10596
  91. Rahman S (2015) Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy & Behavior 49: 71-75. https://doi.org/10.1016/j.yebeh.2015.05.003
  92. Wesół-Kucharska D, Rokicki D, Jezela-Stanek A (2021) Epilepsy in Mitochondrial Diseases-Current State of Knowledge on Aetiology and Treatment. Children (Basel) 8(7):532. https://doi.org/10.3390/children8070532 .
  93. Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R (2019) Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2018.7606
  94. Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M (2015) Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 75:151-158. https://doi.org/10.1016/j.nbd.2014.12.025
  95. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613. https://doi.org/10.1155/2015/745613
  96. Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48(5):766-773. https://doi.org/10.1002/1531-8249(200011)48:5<766::aid-ana10>3.3.co;2-d
  97. Gao J, Yao H, Pan XD, Xie AM, Zhang L, Song JH, Ma AJ, Liu ZC (2014) Alteration of mitochondrial function and ultrastructure in the hippocampus of pilocarpine-treated rat. Epilepsy Res 108(2):162-170. https://doi.org/10.1016/j.eplepsyres.2013.11.016
  98. Wu M., Liu X., Chi X., Zhang L., Xiong W, Chiang S.M., Zhou D., Li J. (2018) Mitophagy in refractory temporal lobe epilepsy patients with hippocampal sclerosis. Cell Mol Neurobiol 38(2):479-486. https://doi.org/10.1007/s10571-017-0492-2
  99. Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12(1):35-40. https://doi.org/10.1016/j.mito.2011.04.004
  100. Upadhyay M, Agarwal S, Bhadauriya P, Ganesh S (2017) Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol Dis 100:39-51. https://doi.org/10.1016/j.nbd.2017.01.002

The review analyzed articles from the Pub- Med database mainly from the last 10 years, indicating the role of mitochondria in the development of diseases of the central nervous system and mental disorders. Mu- tations in mitochondrial/nuclear DNA genes, oxidative stress, impaired redox mechanisms, and regulation of mitochondrial dynamics have been found to cause mito- chondrial dysfunction. At the same time, the permeabil- ity of mitochondrial membranes changes, the influx of calcium ions increases, as a result of which the mem- brane potential shifts, oxidation processes become more intense, a large number of reactive oxygen species are formed, oxidative phosphorylation is disrupted, and the process of neuronal apoptosis starts. Mitochondrial dys- function is a common pathogenetic mechanism of Alz- heimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's chorea, epilepsy, schizophrenia, etc. Discoveries and advances in molecular genetics have increased our understanding of the early pathology of mitochondrial disorders, enabled disease modeling, and provided entirely new perspectives on molecular pathogenesis. It is necessary that this research continues and then, in the near future, it will help develop the search for possible ways to treat the diseases that people suffer from.

Keywords : Mitochondrial Dysfunction, Neurodegenerative And Mental Diseases, Mtdna Mutations, Oxidative Stress.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe