Topological Machine Learning: Theoretical Foundations and a Custom Classifier on Artificial Data


Authors : Dr. Mitat Uysal

Volume/Issue : Volume 10 - 2025, Issue 5 - May


Google Scholar : https://tinyurl.com/2j8jdsay

DOI : https://doi.org/10.38124/ijisrt/25may1735

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Topological Machine Learning (TML) leverages tools from algebraic topology, especially persistent homology, to extract robust features from data that remain invariant under continuous deformations. This article presents a comprehensive overview of the theoretical underpinnings of TML, historical evolution, core equations, and a Python-based implementation of a topological handwritten digit classifier using artificial data. We avoid common libraries like sklearn and tensorflow, ensuring complete control and transparency of computation.

Keywords : Topological Machine Learning,Topology,Homology,Topological Features in ML,Topological Digit Classifier.

References :

  1. Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X
  2. Edelsbrunner, H., & Harer, J. (2010). Computational Topology: An Introduction. American Mathematical Society.
  3. Chazal, F., & Michel, B. (2017). An introduction to topological data analysis. arXiv preprint, arXiv:1710.04019. https://arxiv.org/abs/1710.04019
  4. Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley.
  5. Morse, M. (1934). The Calculus of Variations in the Large. American Mathematical Society.
  6. Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.
  7. Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete & Computational Geometry, 28(4), 511–533. https://doi.org/10.1007/s00454-002-2885-2
  8. Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete & Computational Geometry, 33(2), 249–274. https://doi.org/10.1007/s00454-004-1146-y
  9. Singh, G., Mémoli, F., & Carlsson, G. (2007). Topological methods for the analysis of high dimensional data sets and 3D object recognition. Eurographics Symposium on Point-Based Graphics, 91–100. https://doi.org/10.2312/SPBG/SPBG07/091-100
  10. Lum, P. Y., et al. (2013). Extracting insights from the shape of complex data using topology. Nature Biotechnology, 31(6), 545–552. https://doi.org/10.1038/nbt.2572
  11. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8), 1–35.
  12. Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence diagrams. Discrete & Computational Geometry, 37(1), 103–120. https://doi.org/10.1007/s00454-006-1276-5
  13. Wasserman, L. (2018). Topological data analysis. Annual Review of Statistics and Its Application, 5, 501–532. https://doi.org/10.1146/annurev-statistics-031017-100045
  14. Bendich, P., Wang, B., & Mukherjee, S. (2016). Persistent homology analysis of brain artery trees. The Annals of Applied Statistics, 10(1), 198–218. https://doi.org/10.1214/15-AOAS886
  15. Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4741–4748. https://doi.org/10.1109/CVPR.2015.7299040
  16. Hofer, C., Kwitt, R., Niethammer, M., & Uhl, A. (2017). Deep learning with topological signatures. In Advances in Neural Information Processing Systems (NeurIPS), 30.
  17. Carrière, M., Cuturi, M., & Oudot, S. (2020). PersLay: A neural network layer for persistence diagrams and new graph topological signatures. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 108, 2786–2796.
  18. Bauer, U., & Kerber, M. (2014). PHAT – Persistent homology algorithm toolbox. Mathematics in Computer Science, 8(1), 93–115. https://doi.org/10.1007/s11786-014-0186-0
  19. Maria, C., Boissonnat, J.-D., Glisse, M., & Yvinec, M. (2014). The GUDHI library: Simplicial complexes and persistent homology. SoftwareX, 5, 70–75. https://doi.org/10.1016/j.softx.2016.09.002
  20. Oudot, S. Y. (2015). Persistence Theory: From Quiver Representations to Data Analysis. American Mathematical Society.

Topological Machine Learning (TML) leverages tools from algebraic topology, especially persistent homology, to extract robust features from data that remain invariant under continuous deformations. This article presents a comprehensive overview of the theoretical underpinnings of TML, historical evolution, core equations, and a Python-based implementation of a topological handwritten digit classifier using artificial data. We avoid common libraries like sklearn and tensorflow, ensuring complete control and transparency of computation.

Keywords : Topological Machine Learning,Topology,Homology,Topological Features in ML,Topological Digit Classifier.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe