Authors :
Dr. Mitat Uysal
Volume/Issue :
Volume 10 - 2025, Issue 5 - May
Google Scholar :
https://tinyurl.com/2j8jdsay
DOI :
https://doi.org/10.38124/ijisrt/25may1735
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Topological Machine Learning (TML) leverages tools from algebraic topology, especially persistent homology, to
extract robust features from data that remain invariant under continuous deformations. This article presents a
comprehensive overview of the theoretical underpinnings of TML, historical evolution, core equations, and a Python-based
implementation of a topological handwritten digit classifier using artificial data. We avoid common libraries like sklearn
and tensorflow, ensuring complete control and transparency of computation.
Keywords :
Topological Machine Learning,Topology,Homology,Topological Features in ML,Topological Digit Classifier.
References :
- Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X
- Edelsbrunner, H., & Harer, J. (2010). Computational Topology: An Introduction. American Mathematical Society.
- Chazal, F., & Michel, B. (2017). An introduction to topological data analysis. arXiv preprint, arXiv:1710.04019. https://arxiv.org/abs/1710.04019
- Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley.
- Morse, M. (1934). The Calculus of Variations in the Large. American Mathematical Society.
- Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete & Computational Geometry, 28(4), 511–533. https://doi.org/10.1007/s00454-002-2885-2
- Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete & Computational Geometry, 33(2), 249–274. https://doi.org/10.1007/s00454-004-1146-y
- Singh, G., Mémoli, F., & Carlsson, G. (2007). Topological methods for the analysis of high dimensional data sets and 3D object recognition. Eurographics Symposium on Point-Based Graphics, 91–100. https://doi.org/10.2312/SPBG/SPBG07/091-100
- Lum, P. Y., et al. (2013). Extracting insights from the shape of complex data using topology. Nature Biotechnology, 31(6), 545–552. https://doi.org/10.1038/nbt.2572
- Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8), 1–35.
- Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence diagrams. Discrete & Computational Geometry, 37(1), 103–120. https://doi.org/10.1007/s00454-006-1276-5
- Wasserman, L. (2018). Topological data analysis. Annual Review of Statistics and Its Application, 5, 501–532. https://doi.org/10.1146/annurev-statistics-031017-100045
- Bendich, P., Wang, B., & Mukherjee, S. (2016). Persistent homology analysis of brain artery trees. The Annals of Applied Statistics, 10(1), 198–218. https://doi.org/10.1214/15-AOAS886
- Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4741–4748. https://doi.org/10.1109/CVPR.2015.7299040
- Hofer, C., Kwitt, R., Niethammer, M., & Uhl, A. (2017). Deep learning with topological signatures. In Advances in Neural Information Processing Systems (NeurIPS), 30.
- Carrière, M., Cuturi, M., & Oudot, S. (2020). PersLay: A neural network layer for persistence diagrams and new graph topological signatures. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 108, 2786–2796.
- Bauer, U., & Kerber, M. (2014). PHAT – Persistent homology algorithm toolbox. Mathematics in Computer Science, 8(1), 93–115. https://doi.org/10.1007/s11786-014-0186-0
- Maria, C., Boissonnat, J.-D., Glisse, M., & Yvinec, M. (2014). The GUDHI library: Simplicial complexes and persistent homology. SoftwareX, 5, 70–75. https://doi.org/10.1016/j.softx.2016.09.002
- Oudot, S. Y. (2015). Persistence Theory: From Quiver Representations to Data Analysis. American Mathematical Society.
Topological Machine Learning (TML) leverages tools from algebraic topology, especially persistent homology, to
extract robust features from data that remain invariant under continuous deformations. This article presents a
comprehensive overview of the theoretical underpinnings of TML, historical evolution, core equations, and a Python-based
implementation of a topological handwritten digit classifier using artificial data. We avoid common libraries like sklearn
and tensorflow, ensuring complete control and transparency of computation.
Keywords :
Topological Machine Learning,Topology,Homology,Topological Features in ML,Topological Digit Classifier.