Towards the Mullitization of Mullite Precursor Gel Synthesised from Kaolin Derived-Sodium Metasilicate and Sodium Aluminate


Authors : A. C. K. Amuzu; A. Abandoh; B. Puzer; F. J. K. Adzabe; S. Anane; L. K. Labik; I. Nkrumah; E. K. K. Abavare; B. Kwakye-Awuah

Volume/Issue : Volume 10 - 2025, Issue 9 - September


Google Scholar : https://tinyurl.com/22j39h48

Scribd : https://tinyurl.com/45reahez

DOI : https://doi.org/10.38124/ijisrt/25sep1144

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : A novel synthesis technique was developed for producing mullite nanopowder from kaolinite clay. Kaolin was converted to metakaolin, reduced into sodium silicate and aluminate, and reassembled at the molecular level through controlled precipitation to form an aluminosilicate hydrogel with intentionally high aluminum content. The hydrogel was sintered at 950, 1050, and 1150 °C for 30 min. X-ray Fluorescence spectroscopy (XRF) confirmed enrichment in alumina, while Fourier Transform Infrared spectroscopy (FTIR) revealed progressive dehydroxylation and the emergence of mullite-specific bonds. X-ray Diffraction (XRD) indicated the onset of mullite crystallization at 950 °C and nearly complete transformation at 1150 °C, achieving ~99 % phase purity. Scanning Electron Microscopy (SEM) showed a clear morphological evolution from porous, amorphous gel particles to faceted grains at 950 °C, and well-interlocked mullite grains (2–4 μm) with minimal porosity at 1150 °C. Energy Dispersive X-ray spectroscopy (EDX) confirmed the elemental progression toward the theoretical Al/Si ratio for stoichiometric mullite. These findings demonstrate that mullite nanopowder with high phase purity and desirable microstructural features can be synthesized at 1150 °C from kaolin.

Keywords : Kaolin, Metakaoln, Gel, Mullite, Stoichiometric.

References :

  1. José, V., Pires, E., Almeida, D., Patrício, W.,  Borges, R., Araújo, G. De, & Lucena, H. De. (2018). Mineralogical and dielectric properties of mullite and cordierite ceramics produced using wastes. Ceramics International, 45(4), 4692–4699 .
  2. Krenzel, T. F., Schreuer, J., Laubner, D., Cichocki, M., & Schneider, H. (2019). Thermo-mechanical Properties of Mullite Ceramics : New data. Journal of American Ceramic Society, 102(6), 416–426. https://doi.org/10.1111/jace.15925
  3. Lima, L. K. S., Silva, K. R., Menezes, R. R., Santana, L. N. L., & Lira, H. L. (2022). Microstructural characteristics, properties, synthesis and applications of mullite: a review. Ceramica, 68(6), 126–142. https://doi.org/10.1590/0366-69132022683853184.
  4. Mahnicka-goremikina, L., Svinka, R., Svinka, V., Grase, L., Juhnevica, I., Rundans, M., … Fomenko, S. (2022). Thermal Properties of Porous Mullite Ceramics Modified with. Materials, 15(10), 7935. https://doi.org/10.3390/ma15227935.
  5. Schneider, H., Schreuer, J., & Hildmann, B. (2008). Structure and properties of mullite — A review. Journal of the European Ceramic Society, 28(5), 329–344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017.
  6. Sultana, P., Das, S., Bhattacharya, A., Basu, R., & Nandy, P. (2011). Mullite formation in coal fly ash is facilitated by the incorporation of magnesium oxide. Rev. Adv. Mater. Sci, 27, 69-74.
  7. Romero, M., Padilla, I., Contreras, M., & Aurora, L. (2021). Mullite-Based Ceramics from Mining Waste : A Review. Minerals, 11(332), 1–39. https://doi.org/10.3390/min11030332.
  8. Shishavan, N. M., ESlami-Farsani, R., Ebrahimnezhad-Kaljiri, H., & Aghamohammadi, H. (2019). The effects of pre-heating and sintering temperature on the sol-gel synthesis of mullite nanoparticles. Materials Research Express, 6(10), 105045. https://doi.org/10.1088/2053-1591/ab3929.
  9. Tabit, K., Borja, W., & Saadi, L. (2021). naturally occurring andalusite and marble waste Low-temperature synthesis of mullite-based ceramics from Moroccan naturally occurring andalusite and marble waste. International Journal of Applied Ceramic Technology, 19(3), 1274–1280. https://doi.org/10.1111/ijac.13942.
  10. Jurado, L. T., Hernández, R. M. A., & Rocha-Rangel, E. (2013). Sol‐Gel Synthesis of Mullite Starting from Different Inorganic Precursors. Journal of Powder Technology, 2013(1), 268070. https://doi.org/10.1155/2013/268070.
  11. Komarneni, S., Schneider, H., & K. Okada. (2005). Mullite Synthesis and Processing. In Mullite (Vol. 10, pp. 251–348). Weinheim: Wiley - VCH Verlag GmbH & Co.
  12. EL‑Rafei, A. M., & Mansour, T. S. (2023). Physico‑Mechanical and Microstructure Characteristics of Porous Mullite Creamics. Silicon, 15(6), 7157–7170. https://doi.org/10.1007/s12633-023-02527-y.
  13. Cividanes, L. S., & Campos, T. M. B. (2010). Review of mullite synthesis routes by sol – gel method. Journal of Sol-Gel Science Technology, 55(1), 111–125. https://doi.org/10.1007/s10971-010-2222-9.
  14. Chargui, F., Hamidouche, M., Belhouchet, H., Jorand, Y., Doufnoune, R., & Fantozzi, G. (2018). Mullite fabrication from natural kaolin. Boletín de La Sociedad Española de Cerámica y Vidrio, 57(4), 169–177. https://doi.org/10.1016/j.bsecv.2018.01.001.
  15. Oluseyi, A. K., Aladesuyi, O., & Pal, M. (2016). Evaluation of Nigerian Source of Kaolin as a Raw Material for Mullite Synthesis. Oriental Journal of Chemistry, 32(3), 1571–1582. https://doi.org/10.13005/ojc/320333.
  16. Sanchez-Soto, P. J., Eliche-quesada, D., Martinez-Martinez, S., Perez-Villarejo, L., & Garzon, E. (2022). Study of a Waste Kaolin as Raw Material for Mullite Ceramics and Mullite Refractories by Reaction Sintering. Materials, 15(1), 1–22. https://doi.org/10.3390/ma15020583.
  17. Val, M., & Blah, V. (2021). Effects of Kaolin Additives in Fly Ash on Sintering and Properties of Mullite Ceramics. Minerals, 11(8), 887.
  18. Al-sagheer, N. A., Aboulfotouh, G., Abdel, N. F., & Hashem, F. S. (2024). Extraction of silicon oxide from the partially dealuminated metakaolin residue of the kaolin-based aluminum sulfate manufacturing process. Egyptian Journal of Petroleum, 33(1), 567–576. https://doi.org/10.62593/2090-2468.1051.
  19. Tijani, J. O., Bankole, M. T., Hussein, A., Oketoye, J. A., & Abdulkareem, A. S. (2019). Influence of Synthesis Parameters in the Preparation of Silicon (IV) Oxide Nanoparticles from Dealuminated Metakaolin and Metakaolin with Na2SiO3. Journal of Chemical Society of Nigeria, 44(6), 1143–1156.
  20. Jana, A., & Ray, D. (2020). Synthesis and characterization of sol-gel derived monophasic mullite powder. Ceramica, 66(3), 307–313.
  21. Aripin, H., Mitsudo, S., Prima, E. S., Sudiana, I. N., Kikuchi, H., Sano, S., & Sabchevski, S. (2015). Crystalline mullite formation from mixtures of alumina and a novel material − silica xerogel converted from sago waste ash. Ceramics International, 4(5), 6488–6497. https://doi.org/10.1016/j.ceramint.2015.01.092.
  22. Okada, K. (2008). Activation energy of mullitization from various starting materials. Journal of the European Ceramic Society, 28(5), 377–382. https://doi.org/10.1016/j.jeurceramsoc.2007.03.015.
  23. Alves, H. P., Silva, J. B., Campos, L. F., Torres, S. M., Dutra, R. P., & Macedo, D. A. (2016). Preparation of mullite based ceramics from clay–kaolin waste mixtures. Ceramics international, 42(16), 19086-19090. http://dx.doi.org/10.1016/j.ceramint.2016.09.068.
  24. Viswanath, B., Darshankumar, J., Gunapriya, B., Karthi, M., Sankaramoorthy, T., & Murugesan, K. (2022, November). Preparation and characterization of mullite ceramic nano powder for use in nanocomposites. In AIP Conference Proceedings (Vol. 2446, No. 1, p. 120001). AIP Publishing LLC.
  25. Fernandes, L., de Carvalho, R. A., Amaral, A. C., Pecoraro, E., Salomão, R., & Trovatti, E. (2019). Mullite cytotoxicity and cell adhesion studies. Journal of Materials Research and Technology, 8(3), 2565-2572.
  26. Fang, J., Yan, B., & Deng, T. (2019). Fast transformation of andalusite into mullite by addition of yttria. Boletín de la Sociedad Española de Cerámica y Vidrio, 58(4), 142-150.

A novel synthesis technique was developed for producing mullite nanopowder from kaolinite clay. Kaolin was converted to metakaolin, reduced into sodium silicate and aluminate, and reassembled at the molecular level through controlled precipitation to form an aluminosilicate hydrogel with intentionally high aluminum content. The hydrogel was sintered at 950, 1050, and 1150 °C for 30 min. X-ray Fluorescence spectroscopy (XRF) confirmed enrichment in alumina, while Fourier Transform Infrared spectroscopy (FTIR) revealed progressive dehydroxylation and the emergence of mullite-specific bonds. X-ray Diffraction (XRD) indicated the onset of mullite crystallization at 950 °C and nearly complete transformation at 1150 °C, achieving ~99 % phase purity. Scanning Electron Microscopy (SEM) showed a clear morphological evolution from porous, amorphous gel particles to faceted grains at 950 °C, and well-interlocked mullite grains (2–4 μm) with minimal porosity at 1150 °C. Energy Dispersive X-ray spectroscopy (EDX) confirmed the elemental progression toward the theoretical Al/Si ratio for stoichiometric mullite. These findings demonstrate that mullite nanopowder with high phase purity and desirable microstructural features can be synthesized at 1150 °C from kaolin.

Keywords : Kaolin, Metakaoln, Gel, Mullite, Stoichiometric.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe