Tropical Rainforests and Wildfires in Peru: Examining Biodiversity, Climate Impacts and Conservation Strategies


Authors : Dan F. Orcherton

Volume/Issue : Volume 9 - 2024, Issue 11 - November


Google Scholar : https://tinyurl.com/2avcueca

Scribd : https://tinyurl.com/4csp2btd

DOI : https://doi.org/10.5281/zenodo.14330505


Abstract : We are living in complex times but more importantly there remains a complex interplay between climate change and biodiversity loss, underscored the urgent need for comprehensive conservation strategies within Peru's tropical rainforests. This study explores the dual pressures of anthropogenic activities and climate variability, both of which contribute to increased wildfire incidences and the resultant degradation of biodiversity in these regions. Peru’s Amazon, a crucial component of the global ecological balance, faces significant threats from illegal logging, agricultural expansion, and elevated temperatures, all of which exacerbate wildfire risk and habitat fragmentation. Through an integrative analysis of traditional Indigenous practices, contemporary conservation frameworks, and technological advancements, this research aims to assess sustainable approaches that can bolster ecosystem resilience. Findings indicate that conservation efforts that align Indigenous knowledge systems with governmental policies and international collaboration yield promising outcomes in reducing wildfire impacts and preserving biodiversity. This study advocates for an interdisciplinary strategy to protect Peru’s tropical rainforests, emphasizing the socio-cultural, ecological, and economic interdependencies necessary for long-term environmental sustainability.

References :

  1. Abdullah, M., Blanton, A., Bomfim, B., Broadbent, E. N., Cardil, A., Carlsen, S. C. H., de-Miguel, S., Direk, S., Doaemo, W., Ewane, E. B., Galgamuwa, G. P., Kaur, A., Mills, F., Mohan, M., Montenegro, J. F., Ortega, M., Pons, J., Rondon, M., Silva, C. A., ... Watt, M. S. (2024). The status of forest carbon markets in Latin America. Journal of Environmental Management, 352, 119921. https://doi.org/10.1016/j. jenvman.2023.119921
  2. Abdullah, M., Blanton, A., Bomfim, B., Broadbent, E. N., Cardil, A., Carlsen, S. C. H., de-Miguel, S., Direk, S., Doaemo, W., Ewane, E. B., Galgamuwa, G. P., Kaur, A., Mills, F., Mohan, M., Montenegro, J. F., Ortega, M., Pons, J., Rondon, M., Silva, C. A., ... Watt, M. S. (2024). The status of forest carbon markets in Latin America. Journal of Environmental Management, 352, 119921. https://doi.org/10.1016/j. jenvman.2023.119921
  3. Acebey, S. V., Agard, J., Baptiste, M. P., Blanco, M. V., Gadda, T., García Marquez, J., Guezala, M. C., Klatt, B., Mastrangelo, M. E., Ometto, J. P., Pengue, W. A., Ramírez, W., & Valle, M. (2018). Current and future interactions between nature and society. Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services. https://core.ac. uk/download/516008654.pdf
  4. Adrian, R., Anshari, G. Z., Arneth, A., Gao, Q., Gonzalez, P., Harris, R., Morecroft, M. D., Parmesan, C., Price, J., Stevens, N., Talukdarr, G. H., & Trisurat, Y. (2022). Terrestrial and freshwater ecosystems and their services (Chapter 2). Cambridge University Press. https://core.ac.uk/download/586790529.pdf
  5. Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F. E., Leite, P. T. P., Mendoza, I., Morellato, L. P. C., Peres, C. A., Rocha, N. M. W. B., Silva, T. S. F., Soares, N. C., Staggemeier, V. G., Streher, A. S., & Vargas, B. C. (2016). Linking plant phenology to conservation biology. Elsevier BV. https://core.ac.uk/download/41992282.pdf
  6. Alencar, A., Almeida, C., Aragão, L. E. O., Armenteras, D., Barlow, J., Berenguer, E., Bilbao, B., Brando, P. M., Bynoe, P., Fearnside, P., Finer, M., Flores, B. M., García-Villacorta, R., Jenkins, C. N., Lees, A. C., Nascimento, N., Silva Junior, C. H. L., Smith, C. C., & Souza, C. (2021). Drivers and ecological impacts of deforestation and forest degradation (Chapter 19). United Nations Sustainable Development Solutions Network. https://core.ac.uk/download/491157256.pdf
  7. Aragão, L. E. O. C. and Shimabukuro, Y. E. (2010). The incidence of fire in amazonian forests with implications for redd. Science, 328(5983), 1275-1278. https://doi.org/10.1126/science.1186925
  8. Astigarraga, L., Castellanos, E. J., Chacón, N., Cuvi, N., Huggel, C., Lemos, M. F., Miranda Sara, L. R., Moncassim Vale, M., Ometto, J. P., Peri, P. L., Postigo, J. C., Ramajo Gallardo, L., Roco, L., & Rusticucci, M. M. (2022). Central and South America. Cambridge University Press. https://core.ac.uk/ download/539621776.pdf
  9. Balele, F. (2021). Wildfire dynamics, local people’s fire use and underlying factors for wildfires at Liwale District in Southern Tanzania. https://core.ac.uk/ download/478920790.pdf
  10. Belmont, R. (2024). A conservation model: Costa Rican conservation strategies effectively preserve their threatened primates. ePublications at Regis University. https://core.ac.uk/download/621678527. pdf
  11. Bhagwat, S. A., Buchori, D., Clough, Y., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Tscharntke, T., Veldkamp, E., & Wanger, T. C. (2011). Multifunctional shade‐tree management in tropical agroforestry landscapes: A review. Journal of Applied Ecology, 48(2), 331-343. http://deepblue.lib.umich. edu/bitstream/2027.42/87099/1/j.1365-2664.2010. 01939.x.pdf
  12. Bonatti, M., Da Ponte, E., Eufemia, L., Sieber, S., & Turetta, A. P. D. (2022). Fires in the Amazon region: Quick policy review. Wiley. https://core.ac.uk/ download/511868485.pdf
  13. Bush, M. B., Corbet, A. S., D'Abrera, B., Ghani, M. A., Hallmann, C. A., Hanson, J. O., Häuser, C. L., Lambert, F. R., MacKinnon, K., Meijaard, E., Otsuka, K., Rosoman, G., Sabah Forestry Department, Scriven, S. A., & World Wide Fund for Nature (WWF). (2019). Assessing the effectiveness of protected areas for conserving range-restricted rainforest butterflies in Sabah, Borneo. Conservation Biology, 33(6), 1193-1203. https://core.ac.uk/ download/237068014.pdf
  14. Carmenta, R., Parry, L., Blackburn, A., Vermeylen, S., & Barlow, J. (2011). Understanding Human-Fire Interactions in Tropical Forest Regions: a Case for Interdisciplinary Research across the Natural and Social Sciences. Ecology and Society, 16(1). http://www.jstor.org/stable/26268868
  15. Celis, N., Casallas, A., Lopez-Barrera, E. A., Felician, M., De Marchi, M., & Pappalardo, S. E. (2023). Climate change, forest fires, and territorial dynamics in the Amazon rainforest: An integrated analysis for mitigation strategies. ISPRS International Journal of Geo-Information, 12(10), 436. https://doi.org/ 10.3390/ijgi12100436
  16. Certini, G., Moya, D., Lucas-Borja, M. E., & Mastrolonardo, G. (2021). The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management, 488, 118989.
  17. Chapple, K., & Montero, S. (2016). From learning to fragile governance: Regional economic development in rural Peru. Journal of Rural Studies, 44, 143-152.
  18. Chen, Y., Randerson, J. T., Morton, D. C., et al. (2011). Forecasting fire season severity in South America using sea surface temperature anomalies. Science, 334(6061), 787-791.
  19. Christmann, T. (2023). Revisiting the science and practice of ecosystem restoration in tropical mountains. https://core.ac.uk/download/590242264. pdf
  20. Cooke, S. J., Piczak, M. L., Singh, N. J., Åkesson, S., Ford, A. T., Chowdhury, S., ... & Lennox, R. J. (2024). Animal migration in the Anthropocene: threats and mitigation options. Biological Reviews. Retrieved from: https://onlinelibrary.wiley.com/doi/full/ 10.1111/brv.13066
  21. Cruz, M., Pradel, W., Juarez, H., Hualla, V., & Suarez, V. (2023). Deforestation Dynamics in Peru. A Comprehensive Review of Land Use.
  22. Dangles, O., Forbes, G. A., Garrett, K. A., Halloy, S., Nicklin, C., Perez, C., Sherwood, S. G., & Vanek, S. (2010). Climate change in the high Andes: Implications and adaptation strategies for small-scale farmers. https://core.ac.uk/download/pdf/29241383. pdf
  23. Eberle, C., O’Connor, J., Narvaez, L., Mena Benavides, M., & Sebesvári, Z. (2023). Interconnected disaster risks 2023: Risk tipping points. https://doi.org/10.53324/wtwn2495
  24. Finer, M., Jenkins, C. N., & Pimm, S. L., et al. (2023). Deforestation and fragmentation of the Peruvian Amazon: A quantitative assessment of trends and policies. Journal of Tropical Ecology, 40(4), 225-237.
  25. Food and Agriculture Organization. (2020). Global Forest Resources Assessment 2020. Retrieved from https://www.fao.org/interactive/forest-resources-assessment/2020/en/
  26. Goosem, M. (1997). Internal fragmentation: The effects of roads, highways, and powerline clearings on movements and mortality of rainforest vertebrates. University of Chicago Press. https://core.ac.uk/download/303770072.pdf
  27. Gordon, H. S. J., Ross, J. A., Bauer-Armstrong, C., Moreno, M., Byington, R., & Bowman, N. (2023). Integrating Indigenous Traditional Ecological Knowledge of land into land management through Indigenous-academic partnerships. Land use policy, 125, 106469.
  28. Griffiths, T. (2008). Seeing 'REDD'?: Forests, climate change mitigation and the rights of Indigenous peoples. Forest Peoples Programme. https://core.ac.uk/download/71354797.pdf
  29. Hobbs, N. T., Galvin, K. A., Stokes, C. J., Lackett, J. M., Ash, A. J., Boone, R. B., ... & Thornton, P. K. (2008). Fragmentation of rangelands: Implications for humans, animals, and landscapes. Global environmental change, 18(4), 776-785.
  30. Hoopes, J. W. (2011). Imagining Human Alteration of Ancient Landscapes in Central and South America. In The Ethics of Anthropology and Amerindian Research: Reporting on Environmental Degradation and Warfare (pp. 235-267). New York, NY: Springer New York.
  31. Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Mitigation of climate change. Retrieved from https://www.ipcc.ch/2022/04/04/ipcc-ar6-wgiii-pressrelease/
  32. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2022). Biodiversity in peril: IPBES global assessment report. Nature. Retrieved from https://www.nature.com/ articles/d41586-022-04152-y
  33. Jacobsen, D. (2013). Building knowledge for Aboriginal and Torres Strait Islander remote tourism: Lessons from comparable tourism initiatives around the world. Ninti One Limited. https://core.ac.uk/ download/pdf/30677114.pdf
  34. Lees, A. C., Buddemeier, R. W., Burke, L., Benkwitt, C. E., Christensen, J. H., Berenguer, E., França, F. M., Peralta, G., Robinson, J. P. W., Tylianakis, J. M., Ferreira, J., Barlow, J., Louzada, J., Graham, N. A. J., & Takahashi, T. (2020). Climatic and local stressor interactions threaten tropical forests and coral reefs. The Royal Society. https://core.ac.uk/download/ 286710791.pdf
  35. MacBride, F and Dillon, M.O (1980). Flora of Peru. Family Compositae: Part II tribe Anthemideae Assistant Curator Department of Botany. Field Museum of Natural History. Retrieved from: https://www.researchgate.net/profile/Michael-Dillon/publication/267155211_Dillon_MO_1981_Family_Compositae_Part_II_Tribe_Anthemideae_In_J_F_Macbride_Collaborators_Flora_of_Peru_Fieldiana_Botany_NS_7_1-21/links/5446baaf0cf22b3c14e0b 12b/Dillon-MO-1981-Family-Compositae-Part-II-Tribe-Anthemideae-In-J-F-Macbride-Collaborators-Flora-of-Peru-Fieldiana-Botany-NS-7-1-21.pdf?_ sg%5B0%5D=started_experiment_milestone&origin=journalDetail
  36. Ministry of Environment (MINAM).(2023). Amazonía peruana. Retrieved from https://www.minam.gob.pe
  37. Mistry, J., et al. (2016). Traditional Fire Knowledge and its Application to Conservation in South America. Geographical Journal, 182(3), 302-312.
  38. NASA’s Fire Information for Resource Management System (FIRMS). (2024). Retrieved from : https://toolkit.climate.gov/dashboard-fire-information-resource-management-system-firms
  39. National Geographic Society. (n.d.). Amazon Rainforest. Retrieved from https://www.nationalgeographic.com
  40. Pacheco, V., Patterson, B. D., Patton, J. L., Emmons, L. H., Solari, S., & Ascorra, C. F. (1993). List of mammal species known to occur in Manu Biosphere Reserve, Peru. Publicaciones del Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, 44, 1-12.
  41. Pandya, D (2023).  The Effects of Habitat Degradation on Jaguars (Panthera onca). Master’s Programme in Biology – Ecology and Conservation. Bibliographic project 10 hp, 2023. Supervisor: Jacob Höglund Retrieved from : https://www.researchgate.net/profile /Duncan_Pandya/publication/378519236_The_Effects_of_Habitat_Degradation_on_Jaguars_Panthera_onca_Implications_for_Conservation_and_Forest_Management/links/65de0f4ee7670d36abe2e808/The-Effects-of-Habitat-Degradation-on-Jaguars-Panthera-onca-Implications-for-Conservation-and-Forest-Management.pdf
  42. Paolucci, L. N., Pereira, R. L., Rattis, L., Silvério, D. V., Marques, N. C., Macedo, M. N., & Brando, P. M. (2019). Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 51(2), 245-252.
  43. Patterson, B. D., Stotz, D. F., & Solari, S. (2006). Mammals and birds of the Manu biosphere reserve, Peru. Fieldiana Zoology, 110(1), 1-5.
  44. Pendrill, F., Gardner, T., Meyfroidt, P., Persson, U. M., Adams, J., Azevedo, T., Lima, M. G. B., Baumann, M., Curtis, P. G., De Sy, V., Garrett, R., Godar, J., Goldman, E. D., Hansen, M. C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M. J., Ribeiro, V., ... West, C. (2022). Disentangling the numbers behind agriculture-driven tropical deforestation. Science, 377. https://doi.org/10.1126/science.abm9267
  45. Pereira, C. A., Barlow, J., Tabarelli, M., Giles, A. L., de Melo Ferreira, A. E., & Vieira, I. C. G. (2024). Recurrent wildfires alter forest structure and community composition of terra firme Amazonian forests. Environmental Research Letters, 19(11), 114051.
  46. Prideaux, B. (2014). Rainforest tourism, conservation, and management: Challenges for sustainable development. Informa UK Limited. https://core.ac.uk/download/303773664.pdf
  47. Quesada‐Román, A., Ballesteros‐Cánovas, J. A., St. George, S., & Stoffel, M. (2022). Tropical and subtropical dendrochronology: Approaches, applications, and prospects. Ecological Indicators, 144, 109506. https://doi.org/10.1016/j.ecolind.2022.109506
  48. Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation Review, 6, 3825. https://doi.org/10.24294/nrcr.v6i2.3825
  49. SERFOR (2023) Servicio Nacional de Forestal y de Fauna (Lima, Peru). Anuario Forestal y de Fauna Silvestre 2023 Retrieved from: https://repositorio.serfor.gob.pe/handle/SERFOR/969
  50. Van Bodegom, A. J., Savenije, H., & Wit, M. (Eds.). (2009). Forests and climate change: Adaptation and mitigation. Tropenbos International. Wageningen, The Netherlands. xvi + 160 pp.
  51. Visser, M. (2022). Phenology: Climate change is shifting the rhythm of nature. United Nations Environment Programme (UNEP). https://core.ac.uk/download/518785807.pdf
  52. Volpi, G. (2007). Climate mitigation, deforestation, and human development in Brazil. https://core.ac.uk/download/pdf/6248739.pdf
  53. World Meteorological Organization. (2023). Climate change indicators reached record levels in 2023. Retrieved from https://wmo.int/news/media-centre/climate-change-indicators-reached-record-levels-2023-wmo
  54. World Wildlife Fund. (n.d.). Amazon. Retrieved from https://www.worldwildlife.org/places/amazon
  55. Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., & Lippitt, C. D. (2022). Google Earth Engine and artificial intelligence (AI): A comprehensive review. Remote Sensing, 14(14), 3253. https://doi.org/ 10.3390/rs14143253

We are living in complex times but more importantly there remains a complex interplay between climate change and biodiversity loss, underscored the urgent need for comprehensive conservation strategies within Peru's tropical rainforests. This study explores the dual pressures of anthropogenic activities and climate variability, both of which contribute to increased wildfire incidences and the resultant degradation of biodiversity in these regions. Peru’s Amazon, a crucial component of the global ecological balance, faces significant threats from illegal logging, agricultural expansion, and elevated temperatures, all of which exacerbate wildfire risk and habitat fragmentation. Through an integrative analysis of traditional Indigenous practices, contemporary conservation frameworks, and technological advancements, this research aims to assess sustainable approaches that can bolster ecosystem resilience. Findings indicate that conservation efforts that align Indigenous knowledge systems with governmental policies and international collaboration yield promising outcomes in reducing wildfire impacts and preserving biodiversity. This study advocates for an interdisciplinary strategy to protect Peru’s tropical rainforests, emphasizing the socio-cultural, ecological, and economic interdependencies necessary for long-term environmental sustainability.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe