Authors :
Saranya Balaguru; Alekhya Gandra
Volume/Issue :
Volume 9 - 2024, Issue 11 - November
Google Scholar :
https://tinyurl.com/ymt6bwem
Scribd :
https://tinyurl.com/y84pamc3
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24NOV958
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Advancements in generative artificial
intelligence (AI) are reshaping the drug discovery
landscape by introducing automated, data-driven
workflows that significantly reduce development time and
cost. This paper explores a process discovery and
automation workflow tailored to generative AI
applications in drug discovery, covering the key stages
from data ingestion and preprocessing to molecule
generation, validation, and optimization [1]. Through the
lens of process discovery, we identify critical bottlenecks
and opportunities for automation within traditional drug
discovery workflows, demonstrating how generative AI,
particularly models like Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs),
can efficiently generate diverse molecular candidates.
Each stage of the workflow integrates automation to
streamline high-throughput virtual screening, optimize
lead compounds, and enhance predictive accuracy for
pharmacological properties such as bioavailability,
efficacy, and safety. By embedding automation into these
processes, generative AI accelerates not only the
generation of candidate compounds but also their
assessment against complex biological criteria. The paper
further addresses challenges in data quality,
interpretability, and regulatory compliance while
showcasing real-world case studies where AI-driven
process automation led to breakthrough therapeutic
discoveries. This structured workflow offers a blueprint
for researchers and industry professionals seeking to
leverage process automation and generative AI to drive
innovation, efficiency, and scalability in drug discovery
[1].
Keywords :
Generative AI, Drug Discovery, Process improvement, Healthcare, Automation.
References :
- Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., & Zhavoronkov, A. (2017). Drug discovery with generative adversarial networks for de novo molecular design. Molecular Pharmaceutics, 14(9), 3098–3104. doi:10.1021/acs.molpharmaceut.7b0034
- Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 268–276. doi:10.1021/acscentsci.7b00572
- Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, A. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., & Mamoshina, P. (2020). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. doi:10.1038/s41587-019-0224-x
- Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola, T. S., Barzilay, R., & Collins, J. J. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688–702.e13. doi:10.1016/j.cell.2020.01.021
- Merk, D., Friedrich, L., Grisoni, F., & Schneider, G. (2018). De novo design of bioactive small molecules by artificial intelligence. Molecular Informatics, 37(1–2), 1700153. doi:10.1002/minf.201700153
- Molnar, C. (2019). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub.
- Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de novo design through deep reinforcement learning. Journal of Cheminformatics, 9(1), 48. doi:10.1186/s13321-017-0235-x
- McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. C., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., … Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. doi:10.1038/s41586-019-1799-6
- De Cao, N., & Kipf, T. (2018). MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973.
- Wang, X., Zhang, Y., Jiang, T., & Wang, H. (2021). Transformers in medicinal chemistry and drug discovery: A comprehensive review. Journal of Medicinal Chemistry, 64(16), 11780–11797. doi:10.1021/acs.jmedchem.1c00427
- Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Yau, C., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. doi:10.1038/s41573-019-0024-5
- Walters, W. P., Murcko, M. A., & Feher, M. (1999). Recognizing molecules with drug-like properties. Current Opinion in Chemical Biology, 3(4), 384–387. doi:10.1016/S1367-5931(99)80058-9
- Schneider, G. (2018). Automating drug discovery. Nature Reviews Drug Discovery, 17(2), 97–113. doi:10.1038/nrd.2017.232
- Segler, M. H., Preuss, M., & Waller, M. P. (2018). Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555(7698), 604–610. doi:10.1038/nature25978
- Mouchlis, V. D., Afantitis, A., Serra, A., & Melagraki, G. (2021). Advancing computational drug discovery with artificial intelligence. Expert Opinion on Drug Discovery, 16(4), 457–469. doi:10.1080/17460441.2021.1859370
- Polishchuk, P. G., Madzhidov, T. I., & Varnek, A. (2013). Estimation of the size of drug-like chemical space based on GDB-17 data. Journal of Computer-Aided Molecular Design, 27(8), 675–679. doi:10.1007/s10822-013-9672-4
- Alaimo, S., Pulvirenti, A., & Ferro, A. (2013). Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics, 29(16), 2004–2008. doi:10.1093/bioinformatics/btt305
- Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. doi:10.1016/j.drudis.2018.01.039
- Sun, W., Sanderson, P. E., & Zheng, W. (2016). Drug combination therapy increases successful drug repositioning. Drug Discovery Today, 21(7), 1189–1195. doi:10.1016/j.drudis.2016.05.015
- Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. doi:10.1016/j.drudis.2014.10.012
Advancements in generative artificial
intelligence (AI) are reshaping the drug discovery
landscape by introducing automated, data-driven
workflows that significantly reduce development time and
cost. This paper explores a process discovery and
automation workflow tailored to generative AI
applications in drug discovery, covering the key stages
from data ingestion and preprocessing to molecule
generation, validation, and optimization [1]. Through the
lens of process discovery, we identify critical bottlenecks
and opportunities for automation within traditional drug
discovery workflows, demonstrating how generative AI,
particularly models like Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs),
can efficiently generate diverse molecular candidates.
Each stage of the workflow integrates automation to
streamline high-throughput virtual screening, optimize
lead compounds, and enhance predictive accuracy for
pharmacological properties such as bioavailability,
efficacy, and safety. By embedding automation into these
processes, generative AI accelerates not only the
generation of candidate compounds but also their
assessment against complex biological criteria. The paper
further addresses challenges in data quality,
interpretability, and regulatory compliance while
showcasing real-world case studies where AI-driven
process automation led to breakthrough therapeutic
discoveries. This structured workflow offers a blueprint
for researchers and industry professionals seeking to
leverage process automation and generative AI to drive
innovation, efficiency, and scalability in drug discovery
[1].
Keywords :
Generative AI, Drug Discovery, Process improvement, Healthcare, Automation.