Authors :
Priyanshu; Ankur Thakur
Volume/Issue :
Volume 10 - 2025, Issue 5 - May
Google Scholar :
https://tinyurl.com/2hh5uhwr
Scribd :
https://tinyurl.com/3ns7j8th
DOI :
https://doi.org/10.38124/ijisrt/25may102
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Coriander seed (Sativum) Lin (C. sativum), a plant of the umbelliferae/apiaceae family, is one of the most valuable medicinal herbs and spices that produces essential oils. The plant is used as a spice in food preparation and its leaves and seeds are also frequently utilised in medicine. The C. sativum is grown in India, Denmark, Ireland, Ukraine, Greece, Italy, Afghanistan, China, and Pakistan. Because it keeps food from spoiling, it is essential to preserving food's shelf life. Numerous beneficial and bioactive chemical components, including linalool, p-cymene, myrcene, tridecenal, terpinen-4-ol, camphor, linalyl acetate, limonene, 2-decenoic acid, 2-dodecenal and etc. Both volatile and essential oils with significant therapeutic importance can be found in excess in coriander seeds. In India, the herb that is most readily available is coriander. Moreover, essential oils contain phenolics, alkaloids, phenolics, flavonoids, fatty acids, steroids, glycosides, tannins, and reducing sugars. It also offers nutritional advantages, such as a range of vitamins, minerals, proteins, fats, carbohydrates, and fibres. Because of its several therapeutic uses, coriander is utilized as an antibiotic, antifungal, antioxidant, and digestive help during the process of digestion. This review article covers the morphology, phytochemical screening, extraction technique, and various pharmacological actions of the coriander plant.
Keywords :
Coriander Sativum Seeds, Chemical Constituents, Biological Distribution, Methods of Extraction, Photochemical Screening And Pharmacological Activities.
References :
- Laribi, B., Kouki, K., M'Hamdi, M., &Bettaieb, T. (2015). Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 103, 9-26.
- Sobhani, Z., Mohtashami, L., Amiri, M. S., Ramezani, M., Emami, S. A., & Simal‐Gandara, J. (2022). Ethnobotanical and phytochemical aspects of the edible herb Coriandrum sativum L. Journal of Food Science, 87(4), 1386-1422.
- Malik, S., Khan, H., Upadhyay, A., Kumar, A., & Ahmad, T. CORIANDER SATIVUM SEEDS: A POSSIBLE REMEDY IN THE TREATMENT OF THYROID.
- Mahleyuddin, N. N., Moshawih, S., Ming, L. C., Zulkifly, H. H., Kifli, N., Loy, M. J., ... & Goh, H. P. (2021). Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules, 27(1), 209.
- Mandal, S., & Mandal, M. (2015). Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pacific Journal of Tropical Biomedicine, 5(6), 421-428.
- Al-Snafi, A. E. (2016). A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR Journal of Pharmacy, 6(7), 17-42.
- Bhatnagar SS. (ed.), Coriandrum sativum Linn. (Umbelliferae), The wealth of India. A dictionary of Indian raw materials and industrial products, raw materials. Council of Scientific and Industrial Research, New Delhi 1950;2: 347-350.
- Samba Murty AVSS and Subrahmanyam NS. A textbook of economic botany. Wiley Eastern Limited, New Delhi 1989: 416-419.
- Small E. Culinary herbs. NRC Research Press, Ottawa 1997:219-225.
- The University of Queensland. Special edition of environmental weeds of Australia for biosecurity Queensland,http://keyserver.lucidcentral.org/weeds/data/080c0106-040c-4508-8300- 0b0a06060e01/media/Html/Conium_maculatum.htm (2011).
- Randall RP. A global compendium of weeds. Second edition. Department of Agriculture and Food, Western Australia 2012.
- Lamp C and Collet F. Field guide to weeds in Australia. Inkata Press, Melbourne, Victoria 1989.
- USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network- (GRIN). National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www.arsgrin.gov.4/cgi-bin/npgs/html/taxon.pl? 11523 (22 July 2015).
- Coşkuner, Y., &Karababa, E. (2007). Physical properties of coriander seeds (Coriandrum sativum L.). Journal of Food Engineering, 80, 408–416. https://doi.org/10.1016/j.jfoodeng.2006.02.042
- Momin, A. H., Acharya, S. S., & Gajjar, A. V. (2012). Coriandrum sativum—Review of advances in phytopharmacology. International Journal of Pharmaceutical Sciences and Research, 3, 1233– 1239. doi: http://doi.org/10.13040/IJPSR.0975-8232.3(5).1233-39
- Khajoei Nasab, F.,&, & Khosravi, A. R. (2014). Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of Ethnopharmacology, 154, 190–197. https://doi.org/10.1016/j.jep. 2014.04.003
- Ugulu, I., Baslar, S., Yorek, N., & Dogan, Y. (2009). The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. Journal of Medicinal Plants Research, 3, 345–367. https://doi.org/10.5897/JMPR.9001216
- Bulut, G., Haznedaroğlu, M. Z., Doğan, A., Koyu, H., &Tuzlacı, E. (2017). An ethnobotanical study of medicinal plants in Acipayam (Denizli-Turkey). Journal of Herbal Medicine, 10, 64–81. https://doi.org/10.1016/j.hermed.2017.08.001
- Pieroni, A., & Gray, C. (2008). Herbal and food folk medicines of the Russlanddeutschen living in Künzelsau/Taläcker, South-Western Germany. Phytotherapy Research, 22, 889–901. https://doi.org/10. 1002/ptr.2410
- Hanlidou, E., Karousou, R., Kleftoyanni, V., &Kokkini, S. (2004). The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. Journal of Ethnopharmacology, 91, 281– 299. https://doi.org/10.1016/j.jep.2004.01.007
- Sandhu, D. S., & Heinrich, M. (2005). The use of health foods, spices and other botanicals in the Sikh community in London. Phytotherapy Research, 19, 633–642. https://doi.org/10.1002/ptr.171
- Camejo-Rodrigues, J., Ascensao, L., Bonet, M. À., & Valles, J. (2003). An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de São Mamede” (Portugal). Journal of Ethnopharmacology, 89, 199–209. https://doi.org/10.1016/S0378-8741(03)00270-8
- Emami, S. A., Nadjafi, F., Amine, G. H., Amiri, M. S., Khosravi, M. T., & Nasseri, M. (2012). Les espèces de plantes médicinalesutilisées par les guérisseurstraditionnels dans la province de Khorasan, nord-est de l’Iran. Ethnopharmacologia, 48, 48–59.
- Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134, 676–696. https://doi.org/10.1016/j.jep.2011.01.024
- Kayani, S., Ahmad, M., Zafar, M., Sultana, S., Pukhtoon, M., Khan, Z., Ashraf, M. A., Hussain, J., & Yaseen, G. (2014). Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of Ethnopharmacology, 156, 47–60. https://doi.org/10.1016/j.jep.2014. 08.005
- Sivasankari, B., Anandharaj, M., & Gunasekaran, P. (2014). An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. Journal of Ethnopharmacology, 153, 408–423. https://doi.org/10.1016/j.jep.2014.02.040
- Singh, A. G., Kumar, A., & Tewari, D. D. (2012). An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. Journal of Ethnobiology and Ethnomedicine, 8, 19. https://doi.org/10.1186/1746-4269-8-19
- Mati, E., & De Boer, H. (2011). Ethnobotany and trade of medicinal plants in the Qaysari Market, Kurdish Autonomous Region, Iraq. Journal of Ethnopharmacology, 133, 490–510. https://doi.org/10.1016/j.jep.2010.10.023
- Abouri, M., El Mousadik, A., Msanda, F., Boubaker, H., Saadi, B., & Cherifi, K. (2012). An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. International Journal of Medicinal Plants Research, 1, 99–123. https://doi.org/10.1016/j.jep.2016.12.017
- Fenetahun, Y., & Eshetu, G. (2017). A review on ethnobotanical studies of medicinal plants use by agro-pastoral communities in, Ethiopia.Journal of Medicinal Plants Studies, 5, 33–44. https://doi.org/10.13140/RG.2.2.27572.55689
- Burdock GA, Carabin IG. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol 2009; 47: 22-34.
- Potter TL, Fagerson IS. Composition of coriander leaf volatiles. J Agric Food Chem 1990; 38: 2054-6.
- Olle M, Bender I. The content of oils in umbelliferous crops and its formation. Agron Res 2010; 8: S687-96.
- Raal A, Arak E, Orav A. Chemical composition of coriander seed essential oil and their conformity with EP standards. Agraarteadus 2004; 15: 234-9.
- Dharmalingam R, Nazni P. Phytochemical evaluation of Coriandrum L flowers. Int J Food Nutr Sci 2013; 2: 34-9.
- Freires IDA, Murata RM, Furletti VF, Sartoratto A, de Alencar SMD, Figueira GM, et al. Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human wholegenome expression. PLoS One 2014; 9: e99086.
- Mahendra P, Bisht S. Coriandrum sativum: a daily use spice with great medicinal effect. Pharmacogn J 2011; 3: 84-8.
- Msaada K, Hosni K, Taarit MB, Chahed T, Kchouk ME, Marzouk B. Changes on essential oil composition of coriander (Coriandrum sativum L.) fruits during three stages of maturity. Food Chem 2007; 102: 1131-4.
- Mageed MAAE, Mansour AF, Massry KFE, Ramadan MM, Shaheen MS, Shaaban H. Effect of microwaves on essential oils of coriander and cumin seeds and on their antioxidant and antimicrobial activities. J Essent Oil Bear Plants 2012; 15: 614-27.
- Bhuiyan MNI, Begum J, Sultana M. Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J Pharmacol 2009; 4: 150-3.
- Shahwar MK, El-Ghorab AH, Anjum FM, Butt MS, Hussain S, Nadeem M. Characterization of coriander (Coriandrum sativum L.) seeds and leaves: volatile and non volatile extracts. Int J Food Prop 2012; 15: 736-47.
- Salehi Sourmaghi, M.H., Kiaee, G., Golfakhrabadi, F., Jamalifar, H., Khanavi, M., 2014. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation. J. Food Sci. Technol. 52, 2452–2457.
- Kosar, M., Ozek, T., Goger, V., Kurkcuoglu, M., Can Baser, H., 2005. Comparison of microwave-assisted hydrodistillation and hydrodistillation methods for the analysis of volatile secondary metabolites. Pharmaceut. Biol. 43, 491–495.
- Pavlić, B., Vidović, S., Vladić, J., Radosavljević, R., &Zeković, Z. (2015). Isolation of coriander (Coriandrum sativum L.) essential oil by green extractions versus traditional techniques. The Journal of Supercritical Fluids, 99, 23-28.
- Hussain, A., Arif, M. R., Ahmed, A., Fiaz, I., Zulfiqar, N., Ali, M. Q., ... &Elkhedir, A. E. (2024). Evaluation of Leaves, Flowers, and Seeds of Coriander (Coriandrum sativum L.) through Microwave Drying and Ultrasonic‐Assisted Extraction, for Biologically Active Components. Journal of Food Processing and Preservation, 2024(1), 2378604.
- Z. Zekovic, A. Bušić, D. Komes, J. Vladić, D. Adamović, and B. Pavlić, “Coriander seeds processing: sequential extraction of non-polar and polar fractions using supercritical carbon dioxide extraction and ultrasound-assisted extraction,” Food and Bioproducts Processing, vol. 95, pp. 218–227, 2015.
- K. Mouhoubi, L. Boulekbache-Makhlouf, K. Madani, M. L. Freidja, A. M. Silva, and S. M. Cardoso, “Microwave-assisted extraction optimization and conventional extraction of phenolic compounds from coriander leaves: UHPLC characterization and antioxidant activity,” The North African Journal of Food and Nutrition Research, vol. 7, no. 15, pp. 69–83, 2023.
- Angel, V. V. (2022). Extraction, Phytochemical Screening, and Antioxidant Assay of Coriandrum sativum folium (Coriander Leaves).
- Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3, 205–214. https://doi.org/10.1038/nrd1330
- Perera, H. K. I., &Handuwalage, C. S. (2015). Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices. BMC Complementary and Alternative Medicine, 15, 175. https://doi.org/10.1186/s12906-015-0689-1
- Lakhera, A., Ganeshpurkar, A., Bansal, D., & Dubey, N. (2015). Chemopreventive role ofCoriandrum sativum against gentamicininduced renal histopathological damage in rats. Interdisciplinary Toxicology, 8, 99–102. https://doi.org/10.1515/intox-2015-0015
- Samojlik, I., Lakić, N., Mimica-Dukić, N., Đakovic´-Švajcer, K., &Božin, B. (2010). Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). Journal of Agricultural and Food Chemistry, 58, 8848–8853. https://doi.org/10.1021/jf101645n
- Msaada, K., Taarit, M. B., Hosni, K., Hammami, M., & Marzouk, B. (2009). Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Scientia Horticulturae, 122, 116–124. https://doi.org/10.1016/j.scienta. 2009.04.008
- Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
- Hashim, M. S., Lincy, S., Remya, V., Teena, M., & Anila, L. (2005). Effect of polyphenolic compounds from Coriandrum sativum on H2O2-induced oxidative stress in human lymphocytes. Food Chemistry, 92, 653–660. https://doi.org/10.1016/j.foodchem.2004. 08.027
- Nithya, T. G., & Sumalatha, D. (2014). Evaluation of in vitro antioxidant and anticancer activity of Coriandrum sativum against human colon cancer HT-29 cell lines. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 421–424.
- Ravizza, R., Gariboldi, M. B., Molteni, R., & Monti, E. (2008). Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncology Reports, 20, 625–630. https://doi.org/10.3892/or_00000051
- Iwasaki, K., Zheng, Y. W., Murata, S., Ito, H., Nakayama, K., Kurokawa, T., Sano, N., Nowatari, T., Villareal, M. O., Nagano, Y. N., Isoda, H., Matsui, H., &Ohkohchi, N. (2016). Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World Journal of Gastroenterology, 22, 9765– 9774. https://doi.org/10.3748/wjg.v22.i44.9765
- Shin, E. J., Jeong, J. H., Chung, Y. H., Kim, W. K., Ko, K. H., Bach, J. H., Hong, J. S., Yoneda, Y., & Kim, H. C. (2011). Role of oxidative stress in epileptic seizures. Neurochemistry International, 59, 122– 137. https://doi.org/10.1016/j.neuint.2011.03.025
- Sandhu, D. S., & Heinrich, M. (2005). The use of health foods, spices and other botanicals in the Sikh community in London. Phytotherapy Research, 19, 633–642. https://doi.org/10.1002/ptr.171
- Aguiar, C. C. T., Almeida, A. B., Araújo, P. V. P., de Abreu, R. N. D. C., Chaves, E. M. C., de Vale, O. C., Macêdo, D. S., Woods, D. J., De França Fonteles, M. M., & Vasconcelos, S. M. M. (2012). Oxidative stress and epilepsy: Literature review. Oxidative Medicine and Cellular Longevity, 2012, 795259. https://doi.org/10.1155/2012/795259
- Anaeigoudari, A., Hosseini, M., Karami, R., Vafaee, F., Mohammadpour, T., Ghorbani, A., &Sadeghnia, H. R. (2016). The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats. Avicenna Journal of Phytomedicine, 6, 223–235. https://doi.org/10.22038/ajp.2016.5644
- White, H. S., Smith, M. D., & Wilcox, K. S. (2007). Mechanisms of action of antiepileptic drugs. International Review of Neurobiology, 81, 85–110. https://doi.org/10.1016/S0074-7742(06)81006-8
- Vatanparast, J., Bazleh, S., &Janahmadi, M. (2017). The effects of linalool on the excitability of central neurons of snail Caucasotacheaatrolabiata. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 192, 33–39. https://doi.org/10.1016/j.cbpc.2016.12.004
- Elisabetsky, E., Silva Brum, L. F., & Souza, D. O. (1999). Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine, 6, 107–113. https://doi.org/10.1016/S0944-7113(99)80044-0
- World Health Organization. (2016). Headache disorders [fact sheet]. https://www.who.int/en/news-room/fact-sheets/detail/headache-disorders
- Akerman, S., Romero-Reyes, M., & Holland, P. R. (2017). Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacology and Therapeutics, 172, 151– 170. https://doi.org/10.1016/j.pharmthera.2016.12.005
- Batista, P. A., de Paula Werner, M. F., Oliveira, E. C., Burgos, L., Pereira, P., da Silva Brum, L. F., Story, G. M., & Santos, A. R. S. (2010). The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. The Journal of Pain, 11, 1222–1229. https://doi.org/10.1016/j.jpain. 2010.02.022
- Dussor, G., & Cao, Y. Q. (2016). TRPM8 and migraine. Headache, 56, 1406–1417. https://doi.org/10.1111/head.12948
- Behrendt, H. J., Germann, T., Gillen, C., Hatt, H., & Jostock, R. (2004). Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. British Journal of Pharmacology, 141, 737– 745. https://doi.org/10.1038/sj.bjp.0705652
- Silva, F., & Domingues, F. C. (2017). Antimicrobial activity of coriander oil and its effectiveness as food preservative. Critical Reviews in Food Science and Nutrition, 57, 35–47. https://doi.org/10.1080/10408398.2013.847818
- Wong, P. Y. Y., & Kitts, D. D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97, 505– 515. https://doi.org/10.1016/j.foodchem.2005.05.031
- Duarte, A., Luís, Â., Oleastro, M., & Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 61, 115–122. https://doi.org/10.1016/j.foodcont.2015.09.033
- Begnami, A. F., Duarte, M. C. T., Furletti, V., & Rehder, V. L. G. (2010). Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro. Food Chemistry, 118, 74–77. https://doi.org/10.1016/j.foodchem.2009.04.089
- Hosseinzadeh, S., JamshidianGhalesefidi, M., Azami, M., Mohaghegh, M. A., Hejazi, S. H., &Ghomashlooyan, M. (2016). In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to niclosamid against Hymenolepis nana infection. Journal of Parasitic Diseases, 40, 1307–1310. https://doi.org/10.1007/s12639-015-0676-y
- Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 180, 114147. https://doi.org/10.1016/j.bcp.2020.114147
- Nunes, C. D. R., Barreto Arantes, M., Menezes de Faria Pereira, S., Leandro da Cruz, L., De Souza Passos, M., Pereira de Moraes, L., Vieira, I. J. C., & Barros de Oliveira, D. (2020). Plants as sources of anti-inflammatory agents. Molecules (Basel, Switzerland), 25, 3726. https://doi.org/10.3390/molecules25163726
- Yuan, R., Liu, Z., Zhao, J., Wang, Q. Q., Zuo, A., Huang, L., Gao, H., Xu, Q., Khan, I. A., & Yang, S. (2020). Novel compounds in fruits of coriander (Coşkuner and Karababa) with anti-inflammatory activity.Journal of Functional Foods, 73, 104145. https://doi.org/10.1016/j.jff.2020.104145
- Deepa, B., Acharya, S., & Holla, R. (2020). Evaluation of antiarthritic activity of coriander seed essential oil in Wistar albino rats. Research Journal of Pharmacy and Technology, 13, 761–766. https://doi.org/10.5958/0974-360X.2020.00144.4
- Kazempor, S. F., Vafadar langehbiz, S., Hosseini, M., Shafei, M. N., Ghorbani, A., &Pourganji, M. (2015). The analgesic effects of different extracts of aerial parts of Coriandrum sativum in mice.International Journal of Biomedical Science, 11, 23–2
- Pathan, A. R., Kothawade, K. A., &Logade, M. N. (2011). Anxiolytic and analgesic effect of seeds of Coriandrum sativum Linn. International Journal of Research in Pharmacy and Chemistry, 1, 1087– 1099.
- Taherian, A. A., Vafaei, A. A., & Ameri, J. (2012). Opiate system mediate the antinociceptive effects of Coriandrum sativum in mice. Iranian Journal of Pharmaceutical Research, 11, 679–688.https://doi.org/10.22037/ijpr.2012.1103
- Lau, B. K., & Vaughan, C. W. (2014). Descending modulation of pain: The GABA disinhibition hypothesis of analgesia. Current Opinion in Neurobiology, 29, 159–164. https://doi.org/10.1016/j.conb.2014.07.010
- Asgarpanah, J., &Kazemivash, N. (2012). Phytochemistry, pharmacology and medicinal properties of Coriandrum sativum L. African Journal of Pharmacy and Pharmacology, 6(31), 2340-2345.
- Aissaoui A, Zizi S, Israili ZH, Lyoussi B (2011). Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol. 137(1):652-661.
- Gray AM, Flatt PR (1999). Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br. J. Nutr. 81:203-209.
- Wolf-Maier, K., Cooper, R. S., Kramer, H., Banegas, J. R., Giampaoli, S., Joffres, M. R., Poulter, N., Primatesta, P., Stegmayr, B., & Thamm, M. (2004). Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension, 43, 10–17. https://doi.org/10.1161/01.HYP.0000103630.72812.10
- jabeen, Q., Bashir, S., Lyoussi, B., & Gilani, A. H. (2009). Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities.Journal of Ethnopharmacology, 122, 123–130. https://doi.org/10.1016/j.jep.2008.12.016
- Thuraisingam, S., Sunilson, J. A. J., Kumari, A. V. A. G., &Anandarajagopal, K. (2019). Preliminary phytochemical analysis and diuretic activity of the extracts of Coriandrum sativum leaves in Wistar albino rats. International Research Journal of Pharmacy and Medical Sciences, 3, 1–3. https://doi.org/10.5281/zenodo. 3590183
- Kamatou, G.P.P.; Viljoen, A.M. Linalool–A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [CrossRef]
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-Ol: A novel and promising therapeutic agent for human gastrointestinal cancers. PLoS ONE 2016, 11, e0156540. [CrossRef] [PubMed]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; TseteghoSokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials 2017, 10, 947. [CrossRef]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [CrossRef] [PubMed]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [CrossRef]
- Chen, W.; Vermaak, I.; Viljoen, A. Camphor-a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon-a review. Molecules 2013, 18, 5434–5454. [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [CrossRef] [PubMed]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of coriander (Coriandrum sativum L.) seeds and leaves: Volatile and non-volatile extracts. Int. J. Food Prop. 2012, 15, 736–747. [CrossRef]
- Silva, C.A.M.; Simeoni, L.A.; Silveira, D. Genus Pouteria: Chemistry and biological activity. Rev. Bras. Farmacogn. 2009, 19, 501–509. [CrossRef]
- Casiglia, S.; Bruno, M.; Rosselli, S.; Senatore, F. Chemical composition and antimicrobial activity of the essential oil from flowers of Eryngium triquetrum (apiaceae) collected wild in Sicily. Nat. Prod. Commun. 2016, 11, 1019–1024. [CrossRef]
- Trombetta, D.; Saija, A.; Bisignano, G.; Arena, S.; Caruso, S.; Mazzanti, G.; Uccella, N.; Castelli, F. Study on the mechanisms of the antibacterial action of some plant alpha, beta-unsaturated aldehydes. Lett. Appl. Microbiol. 2002, 35, 285–290. [CrossRef]
- Marques, C.N.H.; Morozov, A.; Planzos, P.; Zelaya, H.M. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl. Environ. Microbiol. 2014, 80, 6976–6991. [CrossRef] [PubMed]
- Forbes, W.M.; Gallimore, W.A.; Mansingh, A.; Reese, P.B.; Robinson, R.D. Eryngial (trans-2-Dodecenal), a bioactive compound from eryngium foetidum: Its identification, chemical isolation, characterization and comparison with Ivermectin in vitro. Parasitology 2014, 141, 269–278. [CrossRef] [PubMed]
- Abou El-Nasr, T.H.S.; Ibrahim, M.M.; Aboud, K.A.; El-Enany, M.A. Assessment of genetic variability for three coriander (Coriandrum sativum L.) cultivars grown in Egypt, using morphological characters, essential oil composition and ISSR markers. World Appl. Sci. J. 2013, 25, 839–849.
Coriander seed (Sativum) Lin (C. sativum), a plant of the umbelliferae/apiaceae family, is one of the most valuable medicinal herbs and spices that produces essential oils. The plant is used as a spice in food preparation and its leaves and seeds are also frequently utilised in medicine. The C. sativum is grown in India, Denmark, Ireland, Ukraine, Greece, Italy, Afghanistan, China, and Pakistan. Because it keeps food from spoiling, it is essential to preserving food's shelf life. Numerous beneficial and bioactive chemical components, including linalool, p-cymene, myrcene, tridecenal, terpinen-4-ol, camphor, linalyl acetate, limonene, 2-decenoic acid, 2-dodecenal and etc. Both volatile and essential oils with significant therapeutic importance can be found in excess in coriander seeds. In India, the herb that is most readily available is coriander. Moreover, essential oils contain phenolics, alkaloids, phenolics, flavonoids, fatty acids, steroids, glycosides, tannins, and reducing sugars. It also offers nutritional advantages, such as a range of vitamins, minerals, proteins, fats, carbohydrates, and fibres. Because of its several therapeutic uses, coriander is utilized as an antibiotic, antifungal, antioxidant, and digestive help during the process of digestion. This review article covers the morphology, phytochemical screening, extraction technique, and various pharmacological actions of the coriander plant.
Keywords :
Coriander Sativum Seeds, Chemical Constituents, Biological Distribution, Methods of Extraction, Photochemical Screening And Pharmacological Activities.