Val66Met and Genetic Predisposition to Obesity, Mood, and Sleep Disorders


Authors : Shivangi Sharma

Volume/Issue : Volume 10 - 2025, Issue 7 - July


Google Scholar : https://tinyurl.com/4cperw6r

Scribd : https://tinyurl.com/rdr2zwc4

DOI : https://doi.org/10.38124/ijisrt/25jul511

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Brain-derived Neurotrophic Factor (BDNF) has several polymorphisms, one of the most recognized being the Val66Met polymorphism, which is associated with a range of disorders. This review examines current evidence on Val66Met polymorphism, highlighting how Met allele carriers tend to gain weight, exhibit heightened emotional sensitivity, and experience poor sleep quality. The Met allele consistently emerged as a contributor to disrupted neuroplasticity, impaired emotional regulation, and altered metabolic function. Some strategies, such as lifestyle and nutrition-based interventions, showed positive results in increasing BDNF levels, potentially helping to mitigate these effects. The consequences of Val66Met polymorphism might be aggravated by lifestyle factors such as stress, poor diet, and lack of physical activity. Greater insight into the role of Val66Met may help create more tailored and efficient ways of maintaining physical and mental health.

Keywords : BDNF, Metabolism, Mood, Obesity, Sleep, Val66Met Polymorphism.

References :

  1. Vidović V, Maksimović N, Novaković I, et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with body mass index, fasting glucose levels and lipid status in adolescents. Balk J Med Genet. 2020;23(1):77-82. doi:10.2478/bjmg-2020-0004
  2. Devlin P, Cao X, Stanfill AG. Genotype-expression interactions for BDNF across human brain regions. BMC Genomics. 2021;22(1):207. doi:10.1186/s12864-021-07525-1
  3. Bonaccorso S, Sodhi M, Li J, et al. The brain‐derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disord. 2015;17(5):528-535. doi:10.1111/bdi.12294
  4. Saitoh K, Furihata R, Kaneko Y, Suzuki M, Takahashi S, Uchiyama M. Association of serum BDNF levels and the BDNF Val66Met polymorphism with the sleep pattern in healthy young adults. Hashimoto K, ed. PLOS ONE. 2018;13(6):e0199765. doi:10.1371/journal.pone.0199765
  5. Park KS, Ganesh AB, Berry NT, et al. The effect of physical activity on cognition relative to APOE genotype (PAAD-2): study protocol for a phase II randomized control trial. BMC Neurol. 2020;20(1):231. doi:10.1186/s12883-020-01732-1
  6. De Assis GG, Hoffman JR, Bojakowski J, Murawska-Ciałowicz E, Cięszczyk P, Gasanov EV. The Val66 and Met66 Alleles-Specific Expression of BDNF in Human Muscle and Their Metabolic Responsivity. Front Mol Neurosci. 2021;14:638176. doi:10.3389/fnmol.2021.638176
  7. Park C hyun, Kim J, Namgung E, et al. The BDNF Val66Met Polymorphism Affects the Vulnerability of the Brain Structural Network. Front Hum Neurosci. 2017;11:400. doi:10.3389/fnhum.2017.00400
  8. Rana S, Sultana A, Bhatti AA. Effect of interaction between obesity-promoting genetic variants and behavioral factors on the risk of obese phenotypes. Mol Genet Genomics. 2021;296(4):919-938. doi:10.1007/s00438-021-01793-y
  9. Honarmand H, Bonyadi M, Rafat A, Mahdavi R, Aliasghari F. Association study of the BDNF gene polymorphism (G196A) with overweight/obesity among women from Northwest of Iran. Egypt J Med Hum Genet. 2021;22(1):7. doi:10.1186/s43042-020-00130-z
  10. Goldfield GS, Walsh J, Sigal RJ, et al. Associations of the BDNF Val66Met Polymorphism With Body Composition, Cardiometabolic Risk Factors, and Energy Intake in Youth With Obesity: Findings From the HEARTY Study. Front Neurosci. 2021;15:715330. doi:10.3389/fnins.2021.715330
  11. Youssef MM, Underwood MD, Huang YY, et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol. 2018;21(6):528-538. doi:10.1093/ijnp/pyy008
  12. Zhang M, Ward J, Strawbridge RJ, et al. How do lifestyle factors modify the association between genetic predisposition and obesity-related phenotypes? A 4-way decomposition analysis using UK Biobank. BMC Med. 2024;22(1):230. doi:10.1186/s12916-024-03436-6
  13. Amadio P, Macchi C, Favero C, et al. Brain-Derived Neurotrophic Factor and Extracellular Vesicle-Derived miRNAs in an Italian Cohort of Individuals With Obesity: A Key to Explain the Link Between Depression and Atherothrombosis. Front Cardiovasc Med. 2022;9:906483. doi:10.3389/fcvm.2022.906483
  14. Desai D, Momin A, Hirpara P, Jha H, Thaker R, Patel J. Exploring the Role of Circadian Rhythms in Sleep and Recovery: A Review Article. Cureus. Published online June 3, 2024. doi:10.7759/cureus.61568
  15. Zaki NFW, Saleh E, Elwasify M, et al. The association of BDNF gene polymorphism with cognitive impairment in insomnia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:253-264. doi:10.1016/j.pnpbp.2018.07.025
  16. Gosselin N, De Beaumont L, Gagnon K, et al. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories. J Neurosci. 2016;36(32):8390-8398. doi:10.1523/JNEUROSCI.4432-15.2016
  17. Mayeli A, Wilson JD, Donati FL, Ferrarelli F. Reduced slow wave density is associated with worse positive symptoms in clinical high risk: An objective readout of symptom severity for early treatment interventions? Psychiatry Res. 2024;333:115756. doi:10.1016/j.psychres.2024.115756
  18. Muto V, Koshmanova E, Ghaemmaghami P, et al. Alzheimer’s disease genetic risk and sleep phenotypes in healthy young men: association with more slow waves and daytime sleepiness. Sleep. 2021;44(1):zsaa137. doi:10.1093/sleep/zsaa137
  19. Niles AN, Luxenberg A, Neylan TC, et al. Effects of Threat Context, Trauma History, and Posttraumatic Stress Disorder Status on Physiological Startle Reactivity in Gulf War Veterans. J Trauma Stress. 2018;31(4):579-590. doi:10.1002/jts.22302
  20. Shi J, Guo H, Liu S, et al. Resting-state functional connectivity of neural circuits associated with primary and secondary rewards in patients with bipolar disorder. Soc Cogn Affect Neurosci. 2020;15(7):755-763. doi:10.1093/scan/nsaa100
  21. Taren AA, Gianaros PJ, Greco CM, et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial. Soc Cogn Affect Neurosci. 2015;10(12):1758-1768. doi:10.1093/scan/nsv066
  22. Peters RB, Xavier J, Mondin TC, et al. BDNF Val66Met polymorphism and resilience in major depressive disorder: the impact of cognitive psychotherapy. Braz J Psychiatry. 2021;43(1):22-28. doi:10.1590/1516-4446-2019-0726
  23. West HV, Burgess GC, Dust J, Kandala S, Barch DM. Amygdala Activation in Cognitive Task fMRI Varies with Individual Differences in Cognitive Traits. Cogn Affect Behav Neurosci. 2021;21(1):254-264. doi:10.3758/s13415-021-00863-3
  24. Puccetti NA, Schaefer SM, Van Reekum CM, et al. Linking Amygdala Persistence to Real-World Emotional Experience and Psychological Well-Being. J Neurosci. 2021;41(16):3721-3730. doi:10.1523/JNEUROSCI.1637-20.2021
  25. Redlich R, Schneider I, Kerkenberg N, et al. The role of BDNF methylation and Val 66 Met in amygdala reactivity during emotion processing. Hum Brain Mapp. 2020;41(3):594-604. doi:10.1002/hbm.24825
  26. Fungaro Rissatti L, Wilson D, Palace-Berl F, et al. BDNF methylation associated with stress in women: Novel insights in epigenetics and inflammation. Brain Behav Immun - Health. 2024;42:100900. doi:10.1016/j.bbih.2024.100900
  27. Rappaport BI, Barch DM. Brain responses to social feedback in internalizing disorders: A comprehensive review. Neurosci Biobehav Rev. 2020;118:784-808. doi:10.1016/j.neubiorev.2020.09.012
  28. Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48(1-2):42-51. doi:10.3109/07853890.2015.1131327
  29. Wheeler AL, Felsky D, Viviano JD, et al. BDNF-Dependent Effects on Amygdala–Cortical Circuitry and Depression Risk in Children and Youth. Cereb Cortex. 2018;28(5):1760-1770. doi:10.1093/cercor/bhx086
  30. Mahindru A, Patil P, Agrawal V. Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus. Published online January 7, 2023. doi:10.7759/cureus.33475
  31. Lis M, Miłuch T, Majdowski M, Zawodny T. A link between ghrelin and major depressive disorder: a mini review. Front Psychiatry. 2024;15:1367523. doi:10.3389/fpsyt.2024.1367523
  32. Dakanalis A, Mentzelou M, Papadopoulou SK, et al. The Association of Emotional Eating with Overweight/Obesity, Depression, Anxiety/Stress, and Dietary Patterns: A Review of the Current Clinical Evidence. Nutrients. 2023;15(5):1173. doi:10.3390/nu15051173
  33. Pietrabissa G, Volpi C, Bottacchi M, et al. The Impact of Social Isolation during the COVID-19 Pandemic on Physical and Mental Health: The Lived Experience of Adolescents with Obesity and Their Caregivers. Int J Environ Res Public Health. 2021;18(6):3026. doi:10.3390/ijerph18063026
  34. McCartan CJ, Yap J, Firth J, et al. Factors that influence participation in physical activity for anxiety or depression: a synthesis of qualitative evidence. Cochrane Common Mental Disorders Group, ed. Cochrane Database Syst Rev. Published online March 4, 2020. doi:10.1002/14651858.CD013547
  35. Denche-Zamorano Á, Franco-García JM, Carlos-Vivas J, et al. Increased Risks of Mental Disorders: Youth with Inactive Physical Activity. Healthcare. 2022;10(2):237. doi:10.3390/healthcare10020237
  36. Konttinen H. Emotional eating and obesity in adults: the role of depression, sleep and genes. Proc Nutr Soc. 2020;79(3):283-289. doi:10.1017/S0029665120000166
  37. Zhao M, Chen L, Yang J, et al. BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J Affect Disord. 2018;227:226-235. doi:10.1016/j.jad.2017.10.024
  38. Xiong HY, Hendrix J, Schabrun S, et al. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules. 2024;14(1):71. doi:10.3390/biom14010071
  39. Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry. 2018;83(8):638-647. doi:10.1016/j.biopsych.2017.10.030
  40. Martínez-Ezquerro JD, Rendón-Macías ME, Zamora-Mendoza G, et al. Association Between the Brain-derived Neurotrophic Factor Val66Met Polymorphism and Overweight/Obesity in Pediatric Population. Arch Med Res. 2017;48(7):599-608. doi:10.1016/j.arcmed.2018.02.005
  41. Kambestad OB, Sirevåg K, Mrdalj J, et al. Cogn Behav Neurol. 2023;36(4).
  42. Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med. 2017;22(1):27. doi:10.1186/s12199-017-0643-6
  43. Furihata R, Saitoh K, Otsuki R, et al. Association between reduced serum BDNF levels and insomnia with short sleep duration among female hospital nurses. Sleep Med. 2020;68:167-172. doi:10.1016/j.sleep.2019.12.011
  44. Fan TT, Chen WH, Shi L, et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep. 2019;42(1). doi:10.1093/sleep/zsy192
  45. Monteiro BC, Monteiro S, Candida M, et al. Relationship Between Brain-Derived Neurotrofic Factor (Bdnf) and Sleep on Depression: A Critical Review. Clin Pract Epidemiol Ment Health. 2017;13(1):213-219. doi:10.2174/1745017901713010213
  46. Zhang X, Qiao Y, Wang M, et al. The influence of genetic and acquired factors on the vulnerability to develop depression: a review. Biosci Rep. 2023;43(5):BSR20222644. doi:10.1042/BSR20222644
  47. Godos J, Micek A, Currenti W, et al. Fish consumption, cognitive impairment and dementia: an updated dose-response meta-analysis of observational studies. Aging Clin Exp Res. 2024;36(1):171. doi:10.1007/s40520-024-02823-6
  48. Agh F, Honarvar NM, Djalali M, et al. Brain-derived neurotrophic factor is increased by omega-3 fatty acids in coronary artery disease: A randomized, double-blind, placebo-controlled. Fat Acids. (1).
  49. Patted PG, Masareddy RS, Patil AS, Kanabargi RR, Bhat CT. Omega-3 fatty acids: a comprehensive scientific review of their sources, functions and health benefits. Future J Pharm Sci. 2024;10(1):94. doi:10.1186/s43094-024-00667-5
  50. Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients. 2020;12(3):762. doi:10.3390/nu12030762
  51. Jafari F, Amani R, Tarrahi MJ. Effect of Zinc Supplementation on Physical and Psychological Symptoms, Biomarkers of Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Young Women with Premenstrual Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res. 2020;194(1):89-95. doi:10.1007/s12011-019-01757-9
  52. De Vargas LDS, Jantsch J, Fontoura JR, Dorneles GP, Peres A, Guedes RP. Effects of Zinc Supplementation on Inflammatory and Cognitive Parameters in Middle-Aged Women with Overweight or Obesity. Nutrients. 2023;15(20):4396. doi:10.3390/nu15204396
  53. Solati Z, Jazayeri S, Tehrani-Doost M, Mahmoodianfard S, Gohari MR. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutr Neurosci. 2015;18(4):162-168. doi:10.1179/1476830513Y.0000000105
  54. Edmands WM, Ferrari P, Rothwell JA, et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr. 2015;102(4):905-913. doi:10.3945/ajcn.114.101881
  55. Pontifex MG, Malik MMAH, Connell E, Müller M, Vauzour D. Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front Neurosci. 2021;15:640648. doi:10.3389/fnins.2021.640648
  56. Morton L, Paton C, Braakhuis A. The Effects of Polyphenol Supplementation on BDNF, Cytokines and Cognition in Trained Male Cyclists following Acute Ozone Exposure during High-Intensity Cycling. Nutrients. 2024;16(2):233. doi:10.3390/nu16020233
  57. Kasir NR, Teddy LS, Irfan I, Abdul M, Erlyn L, Saidah S. EFFECT OF FOLIC ACID AND METHYLCOBALAMIN ADJUVANT THERAPY ON IMPROVEMENT OF CLINICAL SYMPTOMS AND BDNF LEVELS OF IN SCHIZOPHRENIA PATIENTS. 2023;30(17).
  58. Ledowsky C, Mahimbo A, Scarf V, Steel A. Women Taking a Folic Acid Supplement in Countries with Mandatory Food Fortification Programs May Be Exceeding the Upper Tolerable Limit of Folic Acid: A Systematic Review. Nutrients. 2022;14(13):2715. doi:10.3390/nu14132715
  59. Al Zoubi MS, Al Kreasha R, Aqel S, Saeed A, Al-Qudimat AR, Al-Zoubi RM. Vitamin B12 deficiency in diabetic patients treated with metformin: A narrative review. Ir J Med Sci 1971 -. 2024;193(4):1827-1835. doi:10.1007/s11845-024-03634-4
  60. Quialheiro A, D´Orsi E, Moreira JD, Xavier AJ, Peres MA. The association between vitamin D and BDNF on cognition in older adults in Southern Brazil. Rev Saúde Pública. 2022;56:109. doi:10.11606/s1518-8787.2022056004134
  61. Dawoud NM, Rajab AZ, El‐Hefnawy SM, El‐Bayoumy AM, Salem AM, Seleit I. Serum brain‐derived neurotrophic factor and vitamin D: Two concordant players controlling depression among alopecia areata and vitiligo patients: A case–control study. J Cosmet Dermatol. 2023;22(8):2343-2351. doi:10.1111/jocd.15725
  62. Dominguez LJ, Farruggia M, Veronese N, Barbagallo M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites. 2021;11(4):255. doi:10.3390/metabo11040255
  63. Grant LK, Cain SW, Chang AM, Saxena R, Czeisler CA, Anderson C. Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele. Behav Brain Res. 2018;338:51-55. doi:10.1016/j.bbr.2017.09.025
  64. Murawska-Ciałowicz E, De Assis GG, Clemente FM, et al. Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test. Sci Rep. 2021;11(1):8599. doi:10.1038/s41598-021-88069-y
  65. Sánchez-García S, Moreno-Tamayo K, Ramírez-Aldana R, et al. Insomnia Impairs Both the Pro-BDNF and the BDNF Levels Similarly to Older Adults with Cognitive Decline: An Exploratory Study. Int J Mol Sci. 2023;24(8):7387. doi:10.3390/ijms24087387
  66. Paduchová Z, Katrenčíková B, Vaváková M, et al. The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients. 2021;13(4):1095. doi:10.3390/nu13041095
  67. Carrillo JÁ, Arcusa R, Xandri-Martínez R, Cerdá B, Zafrilla P, Marhuenda J. Impact of Polyphenol-Rich Nutraceuticals on Cognitive Function and Neuroprotective Biomarkers: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2025;17(4):601. doi:10.3390/nu17040601
  68. Behrendt T, Quisilima JI, Bielitzki R, et al. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med. 2024;56(1):2304650. doi:10.1080/07853890.2024.2304650
  69. Ryu JS, Lee YM, Kim YS, et al. Association between BDNF Polymorphism and Depressive Symptoms in Patients Newly Diagnosed with Type 2 Diabetes Mellitus. Yonsei Med J. 2021;62(4):359. doi:10.3349/ymj.2021.62.4.359
  70. Henechowicz TL, Chen JL, Cohen LG, Thaut MH. The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. Li Z, ed. PLOS ONE. 2021;16(6):e0245107. doi:10.1371/journal.pone.0245107
  71. Martens L, Herrmann L, Colic L, et al. Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Sci Rep. 2021;11(1):6742. doi:10.1038/s41598-021-86220-3
  72. Komar-Fletcher M, Wojas J, Rutkowska M, Raczyńska G, Nowacka A, Jurek JM. Negative environmental influences on the developing brain mediated by epigenetic modifications. Explor Neurosci. 2023;2(5):193-211. doi:10.37349/en.2023.00021

Brain-derived Neurotrophic Factor (BDNF) has several polymorphisms, one of the most recognized being the Val66Met polymorphism, which is associated with a range of disorders. This review examines current evidence on Val66Met polymorphism, highlighting how Met allele carriers tend to gain weight, exhibit heightened emotional sensitivity, and experience poor sleep quality. The Met allele consistently emerged as a contributor to disrupted neuroplasticity, impaired emotional regulation, and altered metabolic function. Some strategies, such as lifestyle and nutrition-based interventions, showed positive results in increasing BDNF levels, potentially helping to mitigate these effects. The consequences of Val66Met polymorphism might be aggravated by lifestyle factors such as stress, poor diet, and lack of physical activity. Greater insight into the role of Val66Met may help create more tailored and efficient ways of maintaining physical and mental health.

Keywords : BDNF, Metabolism, Mood, Obesity, Sleep, Val66Met Polymorphism.

CALL FOR PAPERS


Paper Submission Last Date
31 - January - 2026

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe