Zero Trust Network Access Enforcement for Securing Multi-Slice Architectures in 5G Private Enterprise Deployments


Authors : Ugoaghalam Uche James; Onuh Matthew Ijiga; Lawrence Anebi Enyejo

Volume/Issue : Volume 10 - 2025, Issue 8 - August


Google Scholar : https://tinyurl.com/5fwdudn9

Scribd : https://tinyurl.com/muhssv54

DOI : https://doi.org/10.38124/ijisrt/25aug323

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : The evolution of 5G technology and the proliferation of network slicing have revolutionized private enterprise deployments by offering customizable, low-latency, and high-bandwidth services tailored to diverse operational needs. However, this paradigm introduces complex security challenges, particularly in maintaining isolated, resilient, and trustworthy network environments across multiple slices. This review explores the integration of Zero Trust Network Access (ZTNA) principles within multi-slice 5G architectures to fortify enterprise security postures. Emphasizing a “never trust, always verify” model, the paper critically evaluates how ZTNA frameworks enforce least privilege access, continuous identity verification, and adaptive threat detection across heterogeneous network slices. The discussion extends to the interplay between software-defined perimeters, AI-enhanced anomaly detection, and policy-based segmentation to address insider threats, lateral movement, and dynamic endpoint authentication. The paper reviews current industry standards, architectural blueprints, and practical deployment scenarios, shedding light on scalability, performance trade-offs, and regulatory compliance. Ultimately, this study provides a forward-looking perspective on embedding ZTNA into the DNA of 5G private networks to ensure secure, reliable, and agile enterprise operations.

Keywords : Zero Trust Network Access (ZTNA); 5G Network Slicing; Private Enterprise Networks; Access Control Enforcement; Secure Multi-Slice Architecture.

References :

  1. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile Edge Computing: A Survey. Journal of Systems Architecture, 81, 1–21. https://doi.org/10.1016/j.sysarc.2017.12.001
  2. Acar, A., Fereidooni, H., Abera, T., & Sadeghi, A. R. (2020). Web of Things: A Survey on Security Challenges and Solutions. Computer Networks, 148, 126–147. https://doi.org/10.1016/j.comnet.2018.11.006
  3. Aggarwal, S., & Jaiswal, A. K. (2020). Survey on Quantum-Resistant Encryption for Next-Gen Network Security. Journal of Information Security and Applications, 53, 102534. https://doi.org/10.1016/j.jisa.2020.102534
  4. Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024  ISSN No:-2456-2165  https://doi.org/10.38124/ijisrt/IJISRT24OCT1697.
  5. Akindotei, O., Igba E., Awotiwon, B. O., & Otakwu, A (2024). Blockchain Integration in Critical Systems Enhancing Transparency, Efficiency, and Real-Time Data Security in Agile Project Management, Decentralized Finance (DeFi), and Cold Chain Management. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024. DOI: 10.38124/ijsrmt.v3i11.107.
  6. Alex, G., Francesco, T., Stuart, C., Christian, R., & Joan, S. (2020). Slicing 5G networks: An architectural survey. American Cancer Society, 1-41.
  7. Ali, A., Anton, A. I., & Sheikh, A. U. (2022). Identity and Access Management in Enterprise Systems: A Critical Review. Journal of Information Security and Applications, 67, 103149. https://doi.org/10.1016/j.jisa.2022.103149
  8. Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
  9. Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3  (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269
  10. Ayoola, V. B., Ugoaghalam, U. J., Idoko P. I,  Ijiga, O. M & Olola, T. M. (2024). Effectiveness of social engineering awareness training in mitigating spear phishing risks in financial institutions from a cybersecurity perspective. Global Journal of Engineering and Technology Advances, 2024, 20(03), 094–117. https://gjeta.com/content/effectiveness-social-engineering-awareness-training-mitigating-spear-phishing-risks
  11. Azonuche, T. I., & Enyejo, J. O. (2024). Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432
  12. Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448.
  13. Azonuche, T. I., & Enyejo, J. O. (2024). Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69. https://doi.org/10.38124/ijsrmt.v3i6.449
  14. Azonuche, T. I., & Enyejo, J. O. (2025). Adaptive Risk Management in Agile Projects Using Predictive Analytics and Real-Time Velocity Data Visualization Dashboard. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, April – 2025 ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2002
  15. Barakabitze, A. A., Ahmad, A.,  Mijumbi, R. & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges, https://www.sciencedirect.com/science/article/pii/S1389128619304773
  16. Bura, C. (2025). Enriq: Enterprise neural retrieval and intelligent querying. REDAY-Journal of Artificial Intelligence & Computational Science.
  17. Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2019). 5G Network Slicing for Vehicle-to-Everything Services. IEEE Wireless Communications, 26(5), 38-45. https://doi.org/10.1109/MWC.2019.1800440 (used for informational background, not IEEE Transactions)
  18. Celeste, R., & Michael, S. (2021). Next-Gen Network Security: Harnessing AI, Zero Trust, and Cloud-Native Solutions to Combat Evolving Cyber Threats. International Journal of Trend in Scientific Research and Development5(6), 2056-2069.
  19. Coronado, E., & Riggio, R. (2019). Flow-based network slicing: Mapping the future mobile radio access networks. In 2019 28th International Conference on Computer Communication and Networks (ICCCN) (pp. 1-9). IEEE.
  20. D’Oro, S., Restuccia, F., & Melodia, T. (2021). Toward Intelligent Network Slicing for 6G. Computer Networks, 190, 107930. https://doi.org/10.1016/j.comnet.2021.107930
  21. Desai, B., & Patil, A. (2020). Zero Trust with Micro-segmentation: A Software-Defined Approach to Securing Cloud-Native Applications. Annals of Applied Sciences1(1).
  22. Echeverria, J., Baez, J., Salazar, D., & Ramirez, C. (2020). Security and Privacy Threats in 5G: A Comprehensive Survey. Computer Standards & Interfaces, 71, 103442. https://doi.org/10.1016/j.csi.2020.103442
  23. Fernandes, D. A. B., Soares, L. F. B., Gomes, J. V., Freire, M. M., & Inácio, P. R. M. (2014). Security Issues in Cloud Environments: A Survey. International Journal of Information Security, 13(2), 113–170. https://doi.org/10.1007/s10207-013-0208-7
  24. Ferrer Riera, J., Cano, J., & Calveras, A. (2020). Policy Enforcement in Network Slicing: A Context-Aware Framework. Future Generation Computer Systems, 108, 883–895. https://doi.org/10.1016/j.future.2020.03.020
  25. Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, 55(5), 94-100. https://doi.org/10.1109/MCOM.2017.1600951 (used only for overview; not Transactions)
  26. Idika, C. N., Enyejo, J. O., Ijiga, O. M. & Okika, N. (2025). Entrepreneurial Innovations in AI-Driven Anomaly Detection for Software-Defined Networking in Critical Infrastructure Security International Journal of Social Science and Humanities Research Vol. 13, Issue 3, pp: (150-166), DOI: https://doi.org/10.5281/zenodo.16408773
  27. Igba E., Ihimoyan, M. K.,  Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214
  28. Igba, E., Danquah, E. O., Ukpoju, E. A.,   Obasa, J., Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa
  29. Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model
  30. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
  31. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.
  32. Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue.  https://doi.org/10.53022/oarjst.2024.11.1.0060I
  33. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and Cross-Cultural Education: Designing Inclusive Pedagogies for Multilingual Classrooms in Sub Saharan Africa.  JUL 2021 | IRE Journals | Volume 5 Issue 1 | ISSN: 2456-8880.
  34. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital Storytelling as a Tool for Enhancing STEM Engagement: A Multimedia Approach to Science Communication in K-12 Education. International Journal of Multidisciplinary Research and Growth Evaluation. Volume 2; Issue 5; September-October 2021; Page No. 495-505.  https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505
  35. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-Powered E-Learning Platforms for STEM Education: Evaluating Effectiveness in Low Bandwidth and Remote Learning Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN : 2456-3307 Volume 8, Issue 5 September-October-2022 Page Number : 455-475 doi : https://doi.org/10.32628/IJSRCSEIT 
  36. Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-Driven Public Health Literacy : Using Data Visualization and Analytics to Improve Disease Awareness in Secondary Schools. International Journal of Scientific Research in Science and Technology. Volume 10, Issue 4 July-August-2023 Page Number : 773-793. https://doi.org/10.32628/IJSRST
  37. Imoh, P. O. & Enyejo, J. O. (2025). Analyzing Social Communication Deficits in Autism Using Wearable Sensors and Real-Time Affective Computing Systems, International Journal of Innovative Science and Research Technology Volume 10, Issue 5 https://doi.org/10.38124/ijisrt/25may866
  38. Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
  39. Imoh, P.O., Ajiboye,A. S., Balogun, T. K., Ijiga, A. C., Olola, T, M. & Ahmadu, E. O. (2025). Exploring the integration of psychedelic-assisted therapy and digital mental health interventions in trauma recovery for underserved adults with high-functioning autism, Magna Scientia Advanced Research and Reviews, 2025,  DOI:https://doi.org/10.30574/msarr.2025.14.1.0079
  40. James, U. U., Ijiga, O. M., & Enyejo, L. A. (2024). AI-Powered Threat Intelligence for Proactive Risk Detection in 5G-Enabled Smart Healthcare Communication Networks. International Journal of Scientific Research and Modern Technology, 3(11), 125–140. https://doi.org/10.38124/ijsrmt.v3i11.679
  41. Kang, J., Yu, R., Xie, S., Maharjan, S., & Zhang, Y. (2019). Enabling 5G Industrial IoT: A Service-Oriented Framework with Network Slicing. Computer Networks, 166, 106885. https://doi.org/10.1016/j.comnet.2019.106885
  42. Kaushik, K., Kumawat, R., Kejriwal, D., Gupta, S., Kumar, A., & Gupta, S. (2025,). AI-Augmented Cybersecurity Protocols for Secure Multi-Hop Wireless Communication in 6G Networks. In 2025 3rd International Conference on Communication, Security, and Artificial Intelligence (ICCSAI) (Vol. 3, pp. 181-186). IEEE.
  43. Khorsandroo, S., Shamsi, M., & Al-Fuqaha, A. (2022). Security Challenges of 5G Slicing: A Systematic Review. Journal of Information Security and Applications, 67, 103165. https://doi.org/10.1016/j.jisa.2022.103165
  44. Kim, Y., & Lim, H. (2021). Multi-agent reinforcement learning-based resource management for end-to-end network slicing. IEEe Access9, 56178-56190.
  45. Ksentini, A., & Taleb, T. (2021). On Enabling 5G Edge: Architectures and Challenges. Computer Communications, 175, 56-63. https://doi.org/10.1016/j.comcom.2021.05.015
  46. Lal, C., Conti, M., & Das, A. K. (2021). Trust-Aware Security Enforcement in 5G Control Plane Communications. Computer Communications, 175, 24–33. https://doi.org/10.1016/j.comcom.2021.05.013
  47. Lopes, A. R., Correia, M. E., & Garcia, M. (2022). Implementing Software-Defined Perimeters in Cloud-Native Environments: A Security-Driven Perspective. Journal of Systems Architecture, 130, 102775. https://doi.org/10.1016/j.sysarc.2022.102775
  48. Lyu, X., Bi, J., Wang, H., & Zuo, Y. (2021). Designing Scalable Zero Trust Architectures for Enterprise Networks. Computer Standards & Interfaces, 77, 103520. https://doi.org/10.1016/j.csi.2021.103520
  49. Mahfouz, A., & Mohapatra, P. (2022). Security Policies for Enabling Zero Trust in Modern Cyber Systems. Journal of Network and Computer Applications, 207, 103509. https://doi.org/10.1016/j.jnca.2022.103509
  50. Matencio-Escolar, A., Wang, Q., & Calero, J. M. A. (2020). SliceNetVSwitch: Definition, design and implementation of 5G multi-tenant network slicing in software data paths. IEEE Transactions on Network and Service Management17(4), 2212-2225.
  51. Moreno, J. M., Marin-Lopez, R., & Garcia-Alfaro, J. (2022). A Real-Time Context-Aware Authentication Framework for Edge and 5G Networks. Computer Networks, 207, 108785. https://doi.org/10.1016/j.comnet.2022.108785
  52. Nguyen, G. N., & Redon, K. (2022). Architectural Models for Secure Access Control in Distributed Systems. Journal of Systems Architecture, 125, 102456. https://doi.org/10.1016/j.sysarc.2022.102456
  53. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562
  54. Ononiwu, M., Azonuche, T. I., Imoh, P. O. &  Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST
  55. Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS  Volume 8 Issue 1
  56. Ononiwu, M., Azonuche, T. I., Imoh, P. O. &  Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS  Volume 8 Issue 1
  57. Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Mobile Commerce Adoption and Digital Branding Techniques for Startup Growth in Sub-Saharan African Urban Centers  International Journal of Management & Entrepreneurship Research Fair East Publishers Volume: 7 Issue: 6 Page No: 443-463 DOI URL: https://doi.org/10.51594/ijmer.v7i6.1940
  58. Rahman, A., Arora, A., & Choudhury, A. (2021). Secure Service Mesh for Microservice Architectures in 5G Networks. Future Generation Computer Systems, 125, 127–140. https://doi.org/10.1016/j.future.2021.06.012
  59. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero Trust Architecture. NIST Special Publication 800-207. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207
  60. Santhosh, J. M. (2025). On the Design of Security Policies for Service Function Chains in 5G Networks (Doctoral dissertation, Open Research Newcastle).
  61. Sharma, S. K., You, I., & Zhang, N. (2020). Designing Secure Interoperable Architectures for 5G and Beyond. Journal of Network and Computer Applications, 167, 102734. https://doi.org/10.1016/j.jnca.2020.102734
  62. Sinha, S., & Kulkarni, A. (2021). Enhancing Microsegmentation with Adaptive Policy Management in Virtualized Networks. Future Generation Computer Systems, 118, 185–197. https://doi.org/10.1016/j.future.2020.12.014
  63. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Architecture & Orchestration. Computer Networks, 133, 17–39. https://doi.org/10.1016/j.comnet.2018.02.016
  64. Tuncer, B., Chatterjee, M., & Fadlullah, Z. M. (2021). Real-Time User Trust and Risk Assessment in 5G Networks. Journal of Information Security and Applications, 60, 102860. https://doi.org/10.1016/j.jisa.2021.102860
  65. Wichary, T., Mongay Batalla, J., Mavromoustakis, C. X., Żurek, J., & Mastorakis, G. (2022). Network slicing security controls and assurance for verticals. Electronics11(2), 222.
  66. Xu, Y., Li, W., & Liu, B. (2022). A Performance-Aware Framework for Real-Time ZTNA in Edge-Centric 5G Networks. Computer Communications, 189, 68–81. https://doi.org/10.1016/j.comcom.2022.01.004
  67. Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A Survey of Intrusion Detection in Internet of Things. Journal of Network and Computer Applications, 84, 25–37. https://doi.org/10.1016/j.jnca.2017.02.009
  68. Zhang, Y., Patras, P., & Haddadi, H. (2020). Deep Learning in Mobile and Wireless Networking: A Survey. Computer Networks, 167, 107037. https://doi.org/10.1016/j.comnet.2019.107037

The evolution of 5G technology and the proliferation of network slicing have revolutionized private enterprise deployments by offering customizable, low-latency, and high-bandwidth services tailored to diverse operational needs. However, this paradigm introduces complex security challenges, particularly in maintaining isolated, resilient, and trustworthy network environments across multiple slices. This review explores the integration of Zero Trust Network Access (ZTNA) principles within multi-slice 5G architectures to fortify enterprise security postures. Emphasizing a “never trust, always verify” model, the paper critically evaluates how ZTNA frameworks enforce least privilege access, continuous identity verification, and adaptive threat detection across heterogeneous network slices. The discussion extends to the interplay between software-defined perimeters, AI-enhanced anomaly detection, and policy-based segmentation to address insider threats, lateral movement, and dynamic endpoint authentication. The paper reviews current industry standards, architectural blueprints, and practical deployment scenarios, shedding light on scalability, performance trade-offs, and regulatory compliance. Ultimately, this study provides a forward-looking perspective on embedding ZTNA into the DNA of 5G private networks to ensure secure, reliable, and agile enterprise operations.

Keywords : Zero Trust Network Access (ZTNA); 5G Network Slicing; Private Enterprise Networks; Access Control Enforcement; Secure Multi-Slice Architecture.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe