A Review on Encapsulation and Immobilization Technologies for Controlled Enzyme Release in Meat Tenderization


Authors : Alhassan Jibrin Dabban; Egwim Chidi Evans; Onuekwusi Chukwuebuka Emmanuel; Simon Sunday Ameh; Osisami Olubukunola F.; Abubakar Bashirat Ajibola; Atahiru Faiza Isa; Jibrin Abdullahi Alhassan; Sulyman Rofiat Abidemi; Emmanuel Sunday Olorunfemi

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/2nasvt58

Scribd : https://tinyurl.com/bdd7uayz

DOI : https://doi.org/10.38124/ijisrt/26jan838

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Although enzymatic tenderization has proven to be one of the best methods for enhancing the quality of tough meat cuts, its industrial use is still restricted because of issues including unchecked proteolysis, the formation of off flavours, and uneven textural results. Technologies for encapsulation and immobilization present a viable way to manage enzyme activity, control diffusion, boost stability, and increase consistency while tenderizing meat. Despite clear benefits, there are still significant technological obstacles, such as a lack of food-grade carriers, a poor comprehension of the release kinetics within meat, a lack of comparative studies with free enzymes, and a lack of validated models explaining the interactions between enzymes and meat. Current developments in encapsulation and immobilization methods for proteolytic enzymes used in meat tenderization are critically assessed in this review. In order to optimize enzyme delivery systems that improve meat texture, sensory qualities, safety, and industrial scalability, it is critical to fill in the knowledge gaps regarding the science underlying carrier materials, controlled release mechanisms, and the impact of encapsulation and immobilization on enzymatic activity, specificity, and physicochemical properties of meat. The review concludes by outlining future research directions necessary to promote the use of encapsulated and immobilized enzymes in contemporary meat tenderization.

Keywords : Encapsulation, Enzyme, Immobilization, Meat, Tenderization.

References :

  1. Abril, B., Bou, R., García-Pérez, J. V., & Benedito, J. (2023). Role of enzymatic reactions in meat processing and use     of emerging technologies for process intensification. Foods (Basel, Switzerland)12(10), 1940. https://doi.org/10.3390/foods12101940
  2. Jun-hui, X., Hui-juan, C., Bin, Z., & Hui, Y. (2020). The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle. Food Research International, 131, 108991.
  3. Tikhonov, S. L., Tikhonova, N. V., Kudryashov, L. S., Kudryashova, O. A., Moskovenko, N. V., & Tretyakova, I. N. (2021). Efficiency of Microencapsulation of Proteolytic enzymes. Catalysts, 11(11), 1270. https://doi.org/10.3390/catal11111270
  4. Aanniz, T., El Omari, N., Elouafy, Y., Benali, T., Zengin, G., Khalid, A., Abdalla, A. N., Sakran, A. M., & Bouyahya,    A. (2024). Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chemistry and biodiversity, 21(5), e202400116. https://doi.org/10.1002/cbdv.202400116
  5. Mohd Azmi, S. I., Kumar, P., Sharma, N., Sazili, A. Q., Lee, S. J., & Ismail-Fitry, M. R. (2023). Application of plant proteases in meat tenderization: recent trends and future prospects. Foods (Basel, Switzerland)12(6), 1336. https://doi.org/10.3390/foods12061336.  
  6. Yilun, W., Yang, L., Xiaojing, C., Hao, S. & Chun-Xia, Z. (2023). Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Critical Reviews in Food Science and Nutrition, 64(22):1-18. doi:10.1080/10408398.2023.2193982
  7. Pérez-Pérez, V., Jiménez-Martínez, C., González-Escobar, J. L., & Corzo-Ríos, L. J. (2024). Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Frontiers in chemistry, 12, 1423500. https://doi.org/10.3389/fchem.2024.1423500
  8. Liu, Y., & Dave, D. (2022). Recent progress on immobilization technology in enzymatic conversion of marine by-products to concentrated omega-3 fatty acids. Green Chemistry, 24(3), 1049–1066. https://doi.org/10.1039/D1GC03127A
  9. Djekic, V.I. (2022). Scientific challenges in modeling mastication of meat using engineering tools. Theory and Practice of Meat Processing, 7(1), 16-21. DOI:10.21323/2414-438X-2022-7-1-16-21
  10. Sutay Kocabaş, D., & Grumet, R. (2019). Evolving regulatory policies regarding food enzymes produced by recombinant microorganisms. GM Crops and Food, 10(4), 191–207. https://doi.org/10.1080/21645698.2019.1649531
  11. Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., & Franks, P. (2014). Exogenous proteases for meat tenderization. Critical Reviews in Food Science and Nutrition, 54(8), 1012–1031. https://doi.org/10.1080/10408398.2011.623247
  12. Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. (2023). Enzyme immobilization technologies and industrial applications. ACS Omega, 8, 5184– 5196.  doi: 10.1021/acsomega.2c07560
  13. Dahiya, D., Terpou, A., Dasenaki, M., & Nigam, P. S. (2023). Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustainable Food Technology, 1, 500–510. https://doi.org/10.1039/D3FB00015J
  14. Mehta, N., Kumar, P., Verma, A. K., Umaraw, P., Kumar, Y., Malav, O. P., Sazili, A. Q., Domínguez, R., & Lorenzo, J. M. (2022). Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Applied Sciences, 12(3), 1424. https://doi.org/10.3390/app12031424
  15. Ajeeshkumar, K.K., Aneesh, P.A., Raju, N., Suseela, M., Ravishankar, C.N., & Benjakul, S. (2021). Advancements in Liposome Technology: Preparation Techniques and Applications in Food, Functional Foods, and Bioactive Delivery: A Review. Comprehensive Reviews in Food Science and Food Safety, 20, 1280–1306.
  16. Kurzbaum, E., Raizner, Y., Kuc, M. E., Kulikov, A., Hakimi, B., Kruh, L. I., & Menashe, O. (2020). Phenol biodegradation by bacterial cultures encapsulated in 3D microfiltration-membrane capsules. Environmental Technology, 41, 2875-2883.  DOI: 10.1080/09593330.2019.1587005
  17. Awulachew, M. T. (2021). A systematic review of encapsulation and control release technology in food application. International Journal of Agricultural Science and Food Technology, 7(3), 292–296. https://doi.org/10.17352/2455-815X.000122
  18. Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426–442. DOI: 10.1002/fft2.94
  19. Arenas-Jal, M., Suñé-Negre, J.M., & García-Montoya, E. (2020). An Overview of Microencapsulation in the Food Industry: Opportunities, Challenges, and Innovations. European Food Research and Technology, 246, 1371–1382.
  20. Eun, J.B., Maruf, A., Das, P.R., & Nam, S.H. (2020). A Review of Encapsulation of Carotenoids Using Spray Drying and Freeze Drying. Critical Reviews in Food Science and Nutrition, 60, 3547–3572.
  21. Parafati, L., Palmeri, R., Trippa, D., Restuccia, C., & Fallico, B. (2019). Quality Maintenance of Beef Burger Patties by  Direct Addiction or Encapsulation of a Prickly Pear Fruit Extract. Frontiers in Microbiology, 10, 1760.
  22. Xu, Y., Yan, X., Zheng, H., Li, J., Wu, X., Xu, J., Zhen, Z., & Du, C. (2024). The application of encapsulation technology in the food industry: Classifications, recent advances, and perspectives. Food Chemistry: X, 21, 101240. https://doi.org/10.1016/j.fochx.2024.101240
  23. Morellon-Sterling, R., El-Siar, H., Tavano, O.L., Berenguer-Murcia, Á., & Fernández-Lafuente, R. (2020). Ficin: A Protease Extract with Relevance in Biotechnology and Biocatalysis. International Journal of Biological Macromolecules, 162, 394–404. doi: 10.1016/j.ijbiomac.2020.06.14
  24. Busto, M. D., González-Temiño, Y., Albillos, S. M., Ramos-Gómez, S., Pilar-Izquierdo, M. C., Palacios, D., & Ortega, N. (2022). Microencapsulation of a Commercial Food-Grade Protease by Spray Drying in Cross-Linked Chitosan Particles. Foods, 11(14), 2077. https://doi.org/10.3390/foods11142077
  25. Alfieri, C. M., Mattinzoli, D., Ikehata, M., Cresseri, D., Moroni, G., Vaira, V., Ferri, G., Ferrero, S., & Messa, P. (2020). Laser capture microdissection on formalin-fixed and paraffin-embedded renal transplanted biopsies: Technical perspectives for clinical practice application. Experimental and Molecular Pathology, 116, Article 104516
  26. Nedellec, Y., Gondran, C., Gorgy, K., Mc Murtry, S., Agostini, P., Elmazria, O., & Cosnier, S. (2021). Microcapsule-based biosensor containing catechol for the reagent-free inhibitive detection of benzoic acid by tyrosinase. Biosensors and Bioelectronics, 180, Article 113137.
  27. Liao, G., Liu, H., & Wang, X. (2023). More accurate and more efficient: Penicillinase-immobilized phase-change microcapsules for detection and removal of penicillins under microenvironmental thermal management. Journal of Environmental Chemical Engineering, 11(1), Article 109171.
  28. Jiang, G., & Xie, S. (2019). Comparison of AFM Nanoindentation and Gold Nanoparticle Embedding Techniques for Measuring the Properties of Polymer Thin Films. Polymers, 11(4), 617. https://doi.org/10.3390/polym11040617
  29. Jiang, Z., Zhao, S., Fan, Z., Zhao, C., Zhang, L., Liu, D., Bao, Y., & Zheng, J. (2023). A novel all-natural (collagen+pectin)/chitosan aqueous two-phase microcapsule with improved anthocyanin loading capacity. Food Hydrocolloids, 135, Article 108133.
  30. Abdella, M. A. A., Ahmed, S. A., & Hassan, M. E. (2023). Protease immobilization on a novel activated carrier alginate/dextrose beads: Improved stability and catalytic activity via covalent binding. International Journal of Biological Macromolecules, 230, 123139.
  31. Almassri, N., Trujillo, F. J., & Terefe, N. S. (2024). Microencapsulation technology for delivery of enzymes in ruminant feed. Frontiers in Veterinary Science, 11, 1352375.   doi: 10.3389/fvets.2024.1352375
  32. Holyavka, M., Faizullin, D., Koroleva, V., Olshannikova, S., Zakhartchenko, N., Zuev, Y., Kondratyev, M., Zakharova, E., & Artyukhov, V. (2021). Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. International journal of biological macromolecules, 180, 161–176. https://doi.org/10.1016/j.ijbiomac.2021.03.016
  33. Shin, H., Kim, H. T., Choi, M.-J., & Ko, E.-Y. (2019). Effects of bromelain and double emulsion on the physicochemical properties of pork loin. Food Science of Animal Resources, 39(6), 888–902. 
  34. Friedman, I. S., Ben-David, A., Livney, Y. D., & Lesmes, U. (2025). Assessment of enzyme encapsulation as a strategy to improve stability during processing, storage, and distribution. Food Research International, 185, 113987. https://doi.org/10.1016/j.foodres.2025.113987
  35. Merola, A., De Rosa, M., & D’Angelo, C. (2025). Enzyme encapsulation in liposomes: Methods, stability enhancement, and applications. Nanomaterials, 15(15), 1149. https://doi.org/10.3390/nano15151149
  36. Rafeeq, H., Ahmad, S., Khan, M. I., & Gul, S. (2025). Enhancing enzyme robustness, activity range, and storage stability through alginate encapsulation. Scientific Reports, 15, 32668. https://doi.org/10.1038/s41598-025-32668-6
  37. Weng, Y., Zhang, M., & Adhikari, B. (2024). Spray-drying encapsulation of enzymes for improved stability and shelf life in food and bioprocessing applications. Food Biotechnology, 38(1), 1–24. https://doi.org/10.1080/08905436.2023.2269874
  38. Mazzocato, M. C., & Jacquier, J.-C. (2024). Recent advances and perspectives on food-grade immobilisation systems for enzymes. Foods, 13(13), 2127. https://doi.org/10.3390/foods13132127
  39. Rostamabadi, M. M., Topuz, F., Karaca, A. C., Assadpour, E., Rostamabadi, H., & Jafari, S. M. (2026). Nano/micro-encapsulated enzymes as engineered biocatalysts for the food industry. Advances in Colloid and Interface Science, 347, 103697. 
  40. Ishak, S. N. H., Mat Saad, A. H., Latip, W., Raja Abd. Rahman, R. N. Z., Salleh, A. B., Ahmad Kamarudin, N. H., & Mohamad Ali, M. S. (2025). Enhancing industrial biocatalyst performance and cost-efficiency through adsorption-based enzyme immobilization: A review. International Journal of Biological Macromolecules, 316, 144278. https://doi.org/10.1016/j.ijbiomac.2025.144278
  41. Alzahrani, F., Akanbi, T. O., Scarlett, C. J., & Aryee, A. N. A. (2024). The use of immobilised enzymes for lipid and dairy processing and their waste products: A review of current progress. Processes, 12(4), 634. https://doi.org/10.3390/pr12040634
  42. Tadesse, M., & Liu, Y. (2025). Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems. Catalysts, 15(6), 571. https://doi.org/10.3390/catal15060571
  43. Eer, K. X., Rahman, R. A., & Mat Alewi, N. A. (2025). Progress on encapsulation and entrapment of enzymes in electrospun nanofibers. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-025-03244-z
  44. Weng, Y., Li, Y., Chen, X., Song, H., & Zhao, C.-X. (2023). Encapsulation of enzymes in the food industry using spray drying: recent advances and process scale-ups. Critical Reviews in Food Science and Nutrition, Advance online publication. https://doi.org/10.1080/10408398.2023.2193982
  45. Santos, M. P. F. (2024). Proteases: Importance, immobilization protocols, potential applications, and recent advances. BioTech, 13(2), 13. https://doi.org/10.3390/biotech13020013
  46. Emon, D. D., Islam, M. S., Rahman, M. R. A., Aziz, M. G., & Rahman, M. S. (2025). Recent applications of microencapsulation techniques for delivery of functional ingredients in food products: A comprehensive review. Food Chemistry Advances, 6, 100923.
  47. Szpicer, A., Bińkowska, W., Stelmasiak, A., Wojtasik-Kalinowska, I., Czajkowska, A., Mierzejewska, S., Domiszewski, Z., Rydzkowski, T., Piepiórka-Stepuk, J., & Półtorak, A. (2025). Innovative Microencapsulation Techniques of Bioactive Compounds: Impact on Physicochemical and Sensory Properties of Food Products and Industrial Applications. Applied Sciences, 15(22), 11908. https://doi.org/10.3390/app152211908
  48. Xu, Y., Yan, X., Zheng, H., Li, J., Wu, X., Xu, J., Zhen, Z., & Du, C. (2024). The application of encapsulation technology in the food industry: Classifications, recent advances, and perspectives. Food Chemistry: X, 21, 101240.
  49. Zhao, D., Li, H., Huang, M., Wang, T., Hu, Y., Wang, L., Xu, D., Mao, S., Li, C., & Zhou, G. (2020). Influence of proteolytic enzyme treatment on the changes in volatile compounds and odors of beef longissimus dorsi. Food chemistry, 333, 127549. https://doi.org/10.1016/j.foodchem.2020.127549
  50. Abdel Wahab, W. A. (2025). Review of research progress in immobilization and chemical modification of microbial enzymes and their application. Microbial Cell Factories, 24, Article 167. https://doi.org/10.1186/s12934-025-02791-0
  51. Bayu Laksono, A. (2025). Optimization of immobilized enzyme systems for scalable industrial biotechniques applications. International Journal of Bioprocessing and Biotechniques, 6(2), 1–6.

Although enzymatic tenderization has proven to be one of the best methods for enhancing the quality of tough meat cuts, its industrial use is still restricted because of issues including unchecked proteolysis, the formation of off flavours, and uneven textural results. Technologies for encapsulation and immobilization present a viable way to manage enzyme activity, control diffusion, boost stability, and increase consistency while tenderizing meat. Despite clear benefits, there are still significant technological obstacles, such as a lack of food-grade carriers, a poor comprehension of the release kinetics within meat, a lack of comparative studies with free enzymes, and a lack of validated models explaining the interactions between enzymes and meat. Current developments in encapsulation and immobilization methods for proteolytic enzymes used in meat tenderization are critically assessed in this review. In order to optimize enzyme delivery systems that improve meat texture, sensory qualities, safety, and industrial scalability, it is critical to fill in the knowledge gaps regarding the science underlying carrier materials, controlled release mechanisms, and the impact of encapsulation and immobilization on enzymatic activity, specificity, and physicochemical properties of meat. The review concludes by outlining future research directions necessary to promote the use of encapsulated and immobilized enzymes in contemporary meat tenderization.

Keywords : Encapsulation, Enzyme, Immobilization, Meat, Tenderization.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe