Authors :
Mahin Montasir Afif; A. F. Faizur Rahman; A. M. Rafinul Huq; Abdullah Al Noman; Kazi Abdullah Jarif
Volume/Issue :
Volume 10 - 2025, Issue 7 - July
Google Scholar :
https://tinyurl.com/2k6v5fc8
DOI :
https://doi.org/10.38124/ijisrt/25jul042
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Accurate and interpretable tumor classification remains a critical challenge in medical image analysis. In this
study, we conduct a comprehensive evaluation of ten state-of-the-art convolutional neural network (CNN) architectures,
including InceptionV3, Xception, MobileNetV2, DenseNet121, NASNetMobile, VGG16, VGG19, ResNet50, ResNet101, and
EfficientNetB0, on a curated dataset of tumorous and nontumorous images. Each model’s performance was rigorously
assessed using standard classification metrics: accuracy, precision, recall, and F1-score. InceptionV3 emerged as the top-
performing model with an accuracy of 97.75%, while EfficientNetB0 showed the lowest at 56.50%. Beyond raw
performance, we prioritized model transparency by applying five explainable AI (XAI) methods—Grad-CAM, Saliency
Maps, Integrated Gradients, Vanilla Gradients, and SmoothGrad—to visualize and interpret the models’ decision-making
processes. These visualizations revealed critical insights into model attention and class-specific feature relevance, reinforcing
the importance of explainability in medical diagnostics. The results not only highlight the superiority of modern CNNs in
medical imaging tasks but also emphasize the value of interpretability tools for building trust and accountability in clinical
AI applications.
References :
- M. A. Abid and K. Munir, “A systematic review on deep learning implementation in brain tumor segmentation, classification and prediction,” Multimedia Tools and Applications, 2025. [Online]. Available: https://doi.org/10.1007/s11042-025-20706-4
- H. Sadr, M. Nazari, S. Yousefzadeh-Chabok, H. Emami, R. Rabiei, and A. Ashraf, “Enhancing brain tumor classification in MRI images: A deep learning-based approach for accurate diagnosis,” Image and Vision Computing, vol. 159, p. 105555, 2025. [Online]. Available: https://doi.org/10.1016/j.imavis.2025.105555
- Z. Rasheed, Y.-K. Ma, I. Ullah, Y. Y. Ghadi, M. Z. Khan, M. A. Khan, A. Abdusalomov, F. Alqahtani, and A. M. Shehata, “Brain tumor classification from MRI using image enhancement and convolutional neural network techniques,” Brain Sciences, vol. 13, no. 9, p. 1320, 2023. [Online]. Available: https://doi.org/10.3390/brainsci13091320
- S. Arora and M. Sharma, “Deep learning for brain tumor classification from MRI images,” in Proc. Int. Conf. Image Inf. Process. (ICIIP), Shimla, India, 2021, pp. 409–412. doi: 10.1109/ICIIP53038.2021.9702609.
- M. Vimala, S. Palanisamy, S. Guizani, and H. Hamam, “Efficient GDD feature approximation based brain tumour classification and survival analysis model using deep learning,” Egyptian Informatics Journal, vol. 28, p. 100577, 2024. [Online]. Available: https://doi.org/10.1016/j.eij.2024.100577
- R. Vankdothu, M. A. Hameed, and H. Fatima, “A brain tumor identification and classification using deep learning based on CNN-LSTM method,” Computers and Electrical Engineering, vol. 101, p. 107960, 2022. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2022.107960
- Z. Rasheed, Y.-K. Ma, I. Ullah, M. Al-Khasawneh, S. S. Almutairi, and M. Abohashrh, “Integrating convolutional neural networks with attention mechanisms for magnetic resonance imagingbased classification of brain tumors,” Bioengineering, vol. 11, no. 7, p. 701, 2024. [Online]. Available: https://doi.org/10.3390/bioengineering11070701
- S. Ahmmed, P. Podder, M. R. H. Mondal, S. M. A. Rahman, S. Kannan, M. J. Hasan, A. Rohan, and A. E. Prosvirin, “Enhancing brain tumor classification with transfer learning across multiple classes: An in-depth analysis,” BioMedInformatics, vol. 3, no. 4, pp. 1124–1144, 2023. [Online]. Available: https://doi.org/10.3390/biomedinformatics3040068
- P. Priyadarshini, P. Kanungo, and T. Kar, “Multigrade brain tumor classification in MRI images using finetuned EfficientNet,” e-Prime – Advances in Electrical Engineering, Electronics and Energy, vol. 8, p. 100498, 2024. [Online]. Available: https://doi.org/10.1016/j.prime.2024.100498
- M. H. Al-Jammas, E. A. Al-Sabawi, A. M. Yassin, and A. H. Abdulrazzaq, “Brain tumors recognition based on deep learning,” e-Prime – Advances in Electrical Engineering, Electronics and Energy, vol. 8, 2024, Art. no. 100500. [Online]. Available: https://doi.org/10.1016/j.prime.2024.100500
- A. Akter, N. Nosheen, S. Ahmed, M. Hossain, M. A. Yousuf, M. A. A. Almoyad, K. F. Hasan, and M. A. Moni, “Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor,” Expert Systems with Applications, vol. 238, 2024, Art. no. 122347. [Online]. Available: https://doi.org/10.1016/j.eswa.2023.122347
- Y. Xie, F. Zaccagna, L. Rundo, C. Testa, R. Agati, R. Lodi, D. N. Manners, and C. Tonon, “Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives,” Diagnostics, vol. 12, no. 8, p. 1850, 2022. doi: 10.3390/diagnostics12081850.
- M. Saradha, V. Agil, M. Danesha, and M. Vignesh, “A literature review on brain tumor classification using deep learning,” Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET), vol. 12, no. 3, pp. 284, Mar. 2024. doi: 10.22214/ijraset.2024.58808
- M. Nazir, S. Shakil, and K. Khurshid, “Role of deep learning in brain tumor detection and classification (2015 to 2020): A review,” Computerized Medical Imaging and Graphics, vol. 91, p. 101940, 2021. doi: 10.1016/j.compmedimag.2021.101940
- T. R. Mahesh, M. Gupta, A. T. A. Anupama, V. Kumar, O. Geman, and V. D. Kumar, “An XAI-enhanced EfficientNetB0 framework for precision brain tumor detection in MRI imaging,” J. Neurosci. Methods, vol. 410, p. 110227, 2024. doi: 10.1016/j.jneumeth.2024.110227
- M. M. Afif, A. A. Noman, K. M. Kabir, M. M. Ahmmed, M. M. Rahman, M. Mahmud, and M. A.
- Babu, “Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network,” arXiv preprint arXiv:2506.17165, 2025. [Online]. Available: https://arxiv.org/abs/2506.17165
- J. G. Melekoodappattu, C. K. Puthiyapurayil, A. Vylala, and A. S. Dhas, “Brain cancer classification based on multistage ensemble generative adversarial network and convolutional neural network,” Cell Biochemistry and Function, vol. 41, no. 8, pp. 1357–1369, 2023. doi: 10.1002/cbf.3870
- N. Thenmoezhi, B. Perumal, and A. Lakshmi, “Multi-view image fusion using ensemble deep learning algorithm for MRI and CT images,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 23, no. 3, Art. no. 40, pp. 1–24, Mar. 2024. doi: 10.1145/3640811
- S. N. Eity, M. M. Afif, T. Fairooz, M. M. Ahmmed, and M. S. Miah, “DGG-XNet: A hybrid deep learning framework for multi-class brain disease classification with explainable AI,” arXiv preprint arXiv:2506.14367, 2025. [Online]. Available: https://arxiv.org/abs/2506.14367
- M. M. Ahmmed, A. A. Noman, M. M. Afif, K. M. T. Kabir, M. M. Rahman, and M. Mahmud, “A model-mediated stacked ensemble approach for depression prediction among professionals,” arXiv preprint arXiv:2506.14459, 2025. [Online]. Available: https://arxiv.org/abs/2506.14459
- M. M. Afif, K. M. T. Kabir, A. A. Noman, M. E. A. Islam, and M. M. Ahmmed, “Forecasting wind energy potential in Chattogram, Bangladesh: Statistical modeling incorporating Rayleigh and Weibull distributions,” in *Proc. Undergraduate Conf. on Intelligent Computing and Systems (UCICS)*, Varendra University, Rajshahi, Bangladesh, Feb. 2025. [Online]. Available: https://www.researchgate.net/publication/389589352
- M. E. A. Islam, K. M. T. Kabir, M. M. Afif, A. A. Noman, and M. M. Ahmmed, “Biomedical engineering for sustainable health: A qualitative study on advancing SDG 3 in Bangladesh,” in *Proc. Undergraduate Conf. on Intelligent Computing and Systems (UCICS)*, Varendra University, Rajshahi, Bangladesh, Feb. 2025. [Online]. Available: https://www.researchgate.net/publication/389588995
- M. M. Afif, A. A. Noman, M. E. A. Islam, and M. M. Ahmmed, “Losing the night: A comprehensive analysis of trends in artificial light pollution patterns in Bangladesh using VIIRS data,” in *Proc. Int. Conf. Electronics and Informatics (ICEI)*, 2024. [Online]. Available: https://www.researchgate.net/publication/387488597
- A. A. Noman, M. M. Afif, A. M. R. Huq, A. F. Faizur Rahman, and M. E. A. Islam, “Blockchain-driven halal supply chains: Enhancing transparency and efficiency while ensuring Shariah adherence,” *International Journal of Innovative Science and Research Technology*, vol. 10, no. 4, pp. [page numbers if available], Apr. 2025, doi: 10.38124/ijisrt/25apr1001. [Online]. Available: https://tinyurl.com/pz7ymvs2
- A. Shoeibi, M. Khodatars, M. Jafari, N. Ghassemi, D. Sadeghi, P. Moridian, A. Khadem, R. Alizadehsani, S. Hussain, A. Zare, Z. A. Sani, F. Khozeimeh, S. Nahavandi, U. R. Acharya, and J. M. Gorriz, “Automated detection and forecasting of COVID-19 using deep learning techniques: A review,” Neurocomputing, vol. 577, p. 127317, 2024, doi: https://doi.org/10.1016/j.neucom.2024.12731710.1016/j.neucom.2024.127317.
- T. Hulsen, “Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare,” AI, vol. 4, no. 3, pp. 652–666, 2023, doi: https://doi.org/10.3390/ai403003410.3390/ai4030034.
- M. Shrivastava and L. Ye, “Neuroimaging and artificial intelligence for assessment of chronic painful temporomandibular disorders—a comprehensive review,” Int. J. Oral Sci., vol. 15, no. 1, p. 58, Dec. 2023, doi: https://doi.org/10.1038/s41368-023-00254-z10.1038/s41368-023-00254-z.
- S. Zolfaghari, S. Suravee, D. Riboni, and K. Yordanova, “Sensor-Based Locomotion Data Mining for Supporting the Diagnosis of Neurodegenerative Disorders: A Survey,” ACM Comput. Surv., vol. 56, no. 1, Art. no. 10, pp. 1–36, Aug. 2023, doi: https://doi.org/10.1145/360349510.1145/3603495.
- J. Chaki and G. Deshpande, “Brain Disorder Detection and Diagnosis using Machine Learning and Deep Learning – A Bibliometric Analysis,” Current Pharmaceutical Design, vol. 22, no. 13, pp. 2191–2216, May 2024, doi: 10.2174/1570159X22999240531160344.
- S. Lee and K.-S. Lee, “Predictive and Explainable Artificial Intelligence for Neuroimaging Applications,” Diagnostics, vol. 14, no. 21, p. 2394, 2024, doi: https://doi.org/10.3390/diagnostics1421239410.3390/diagnostics14212394.
- R. Gupta, S. Kumari, A. Senapati, R. K. Ambasta, and P. Kumar, “New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease,” Ageing Res. Rev., vol. 90, p. 102013, 2023, doi: https://doi.org/10.1016/j.arr.2023.10201310.1016/j.arr.2023.102013.
- Y. Maeda et al., “Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture,” Brain, vol. 140, no. 4, pp. 914–927, Apr. 2017, doi: https://doi.org/10.1093/brain/awx01510.1093/brain/awx015.
Accurate and interpretable tumor classification remains a critical challenge in medical image analysis. In this
study, we conduct a comprehensive evaluation of ten state-of-the-art convolutional neural network (CNN) architectures,
including InceptionV3, Xception, MobileNetV2, DenseNet121, NASNetMobile, VGG16, VGG19, ResNet50, ResNet101, and
EfficientNetB0, on a curated dataset of tumorous and nontumorous images. Each model’s performance was rigorously
assessed using standard classification metrics: accuracy, precision, recall, and F1-score. InceptionV3 emerged as the top-
performing model with an accuracy of 97.75%, while EfficientNetB0 showed the lowest at 56.50%. Beyond raw
performance, we prioritized model transparency by applying five explainable AI (XAI) methods—Grad-CAM, Saliency
Maps, Integrated Gradients, Vanilla Gradients, and SmoothGrad—to visualize and interpret the models’ decision-making
processes. These visualizations revealed critical insights into model attention and class-specific feature relevance, reinforcing
the importance of explainability in medical diagnostics. The results not only highlight the superiority of modern CNNs in
medical imaging tasks but also emphasize the value of interpretability tools for building trust and accountability in clinical
AI applications.