Advanced Power Quality Assessment in Industrial Distribution Systems Using Wavelet Transform and Machine Learning Classification


Authors : Sunday Oluwafemi Oladoye; Agbo Ogloji James; Otugene Victor Bamigwojo; Onuh Matthew Ijiga

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/2zazc968

Scribd : https://tinyurl.com/5euusbeb

DOI : https://doi.org/10.38124/ijisrt/26jan890

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The increasing penetration of non-linear and power-electronic-based loads in industrial distribution systems has led to a growing prevalence of power quality (PQ) disturbances such as voltage sags, harmonics, transients, and mixed events, which adversely affect equipment reliability and operational efficiency. Conventional PQ assessment techniques based on time-domain indices and Fourier analysis are limited in their ability to accurately characterize non-stationary and transient disturbances commonly observed in industrial environments. This study presents an advanced PQ assessment framework that integrates wavelet-based signal processing with machine learning (ML) classification to enable automated, high-resolution disturbance analysis. Multi-level wavelet decomposition is employed to extract discriminative time–frequency features, including energy distribution, statistical measures, and entropy, which effectively capture the intrinsic characteristics of diverse PQ events. These features are subsequently used to train and evaluate supervised ML classifiers, including support vector machines, random forest models, artificial neural networks, and convolutional neural networks. The proposed framework is validated using representative industrial distribution system data under varying operating conditions, including noisy and mixed PQ scenarios. Comparative results demonstrate that the wavelet–ML approach significantly outperforms traditional RMS-, FFT-, and STFT-based methods in terms of classification accuracy and robustness. The findings highlight the suitability of the proposed framework for real-time industrial PQ monitoring, predictive maintenance, and intelligent decision support, contributing to enhanced reliability and resilience of modern industrial power systems.

Keywords : Power Quality (PQ); Wavelet Transform; Machine Learning Classification; Industrial Distribution Systems; Time– Frequency Analysis; Non-Stationary Disturbances.

References :

  1. Arrillaga, J., Watson, N. R., & Chen, S. (2000). Power system quality assessment. John Wiley & Sons.
  2. Bollen, M. H. J. (2000). Understanding power quality problems: Voltage sags and interruptions. IEEE Press.
  3. Dash, P. K., Panigrahi, B. K., & Panda, G. (2003). Power quality analysis using S-transform. IEEE Transactions on Power Delivery, 18(2), 406–411. https://doi.org/10.1109/TPWRD.2003.809624
  4. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  5. IEEE Standards Association. (2019). IEEE recommended practice for monitoring electric power quality (IEEE Std 1159-2019). IEEE.
  6. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  7. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  8. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  9. IEC. (2014). IEC 61000-4-30: Testing and measurement techniques—Power quality measurement methods. International Electrotechnical Commission.
  10. Watson, N. R., & Arrillaga, J. (2003). Power systems harmonic analysis. John Wiley & Sons.
  11. Bollen, M. H. J. (2000). Understanding power quality problems: Voltage sags and interruptions. IEEE Press.
  12. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  13. IEEE Standards Association. (2014). IEEE recommended practice and requirements for harmonic control in electric power systems (IEEE Std 519-2014). IEEE.
  14. IEC. (2014). IEC 61000-4-30: Testing and measurement techniques—Power quality measurement methods. International Electrotechnical Commission.
  15. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  16. Dash, P. K., Panigrahi, B. K., & Panda, G. (2003). Power quality analysis using S-transform. IEEE Transactions on Power Delivery, 18(2), 406–411. https://doi.org/10.1109/TPWRD.2003.809624
  17. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  18. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  19. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  20. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013
  21. Arrillaga, J., Watson, N. R., & Chen, S. (2000). Power system quality assessment. John Wiley & Sons.
  22. Bollen, M. H. J. (2000). Understanding power quality problems: Voltage sags and interruptions. IEEE Press.
  23. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  24. IEEE Standards Association. (2019). IEEE recommended practice for monitoring electric power quality (IEEE Std 1159-2019). IEEE.
  25. IEC. (2014). IEC 61000-4-30: Testing and measurement techniques—Power quality measurement methods. International Electrotechnical Commission.
  26. Arrillaga, J., Watson, N. R., & Chen, S. (2000). Power system quality assessment. John Wiley & Sons.
  27. Bollen, M. H. J. (2000). Understanding power quality problems: Voltage sags and interruptions. IEEE Press.
  28. Dash, P. K., Panigrahi, B. K., & Panda, G. (2003). Power quality analysis using S-transform. IEEE Transactions on Power Delivery, 18(2), 406–411. https://doi.org/10.1109/TPWRD.2003.809624
  29. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  30. Gabor, D. (1946). Theory of communication. Journal of the Institution of Electrical Engineers – Part III: Radio and Communication Engineering, 93(26), 429–457. https://doi.org/10.1049/ji-3-2.1946.0074
  31. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  32. Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J.-M. (2009). Wavelet toolbox™ user’s guide. MathWorks.
  33. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  34. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  35. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013
  36. Dash, P. K., Panigrahi, B. K., & Panda, G. (2003). Power quality analysis using S-transform. IEEE Transactions on Power Delivery, 18(2), 406–411. https://doi.org/10.1109/TPWRD.2003.809624
  37. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  38. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  39. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  40. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013
  41. Bollen, M. H. J. (2000). Understanding power quality problems: Voltage sags and interruptions. IEEE Press.
  42. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  43. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  44. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  45. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013
  46. Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2012). Electrical power systems quality (3rd ed.). McGraw-Hill.
  47. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  48. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  49. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  50. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  51. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  52. Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). Academic Press.
  53. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  54. Dash, P. K., Panigrahi, B. K., & Panda, G. (2003). Power quality analysis using S-transform. IEEE Transactions on Power Delivery, 18(2), 406–411. https://doi.org/10.1109/TPWRD.2003.809624
  55. Ribeiro, M. V., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2014). Power quality disturbance detection, classification, and location using signal processing techniques. IEEE Signal Processing Magazine, 31(6), 24–35. https://doi.org/10.1109/MSP.2014.2330816
  56. Santoso, S., Powers, E. J., Grady, W. M., & Hofmann, P. (2000). Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 15(2), 654–660. https://doi.org/10.1109/61.852984
  57. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013
  58. Zhang, Y., Xiao, X., & Wang, Y. (2015). Power quality disturbance classification using wavelet transform and support vector machine. International Journal of Electrical Power & Energy Systems, 73, 394–402. https://doi.org/10.1016/j.ijepes.2015.05.013

The increasing penetration of non-linear and power-electronic-based loads in industrial distribution systems has led to a growing prevalence of power quality (PQ) disturbances such as voltage sags, harmonics, transients, and mixed events, which adversely affect equipment reliability and operational efficiency. Conventional PQ assessment techniques based on time-domain indices and Fourier analysis are limited in their ability to accurately characterize non-stationary and transient disturbances commonly observed in industrial environments. This study presents an advanced PQ assessment framework that integrates wavelet-based signal processing with machine learning (ML) classification to enable automated, high-resolution disturbance analysis. Multi-level wavelet decomposition is employed to extract discriminative time–frequency features, including energy distribution, statistical measures, and entropy, which effectively capture the intrinsic characteristics of diverse PQ events. These features are subsequently used to train and evaluate supervised ML classifiers, including support vector machines, random forest models, artificial neural networks, and convolutional neural networks. The proposed framework is validated using representative industrial distribution system data under varying operating conditions, including noisy and mixed PQ scenarios. Comparative results demonstrate that the wavelet–ML approach significantly outperforms traditional RMS-, FFT-, and STFT-based methods in terms of classification accuracy and robustness. The findings highlight the suitability of the proposed framework for real-time industrial PQ monitoring, predictive maintenance, and intelligent decision support, contributing to enhanced reliability and resilience of modern industrial power systems.

Keywords : Power Quality (PQ); Wavelet Transform; Machine Learning Classification; Industrial Distribution Systems; Time– Frequency Analysis; Non-Stationary Disturbances.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe