AI-Enabled ICT Resilience Architecture for High-Availability, Secure, and Blockchain-Assured Communication Systems


Authors : Vincent Onaji; Lorna Kangethe; Richmond Usoh

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/3ymtn2jh

Scribd : https://tinyurl.com/vkyrcx8p

DOI : https://doi.org/10.38124/ijisrt/26jan696

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : This research proposes a unified AI-Enabled ICT Resilience Architecture for next-generation communication systems demanding ultra-high availability, security, and verifiable trust. It synthesizes three core pillars into a coherent framework. First, AI and machine learning provide predictive, adaptive resilience through real-time anomaly detection and automated response. Second, blockchain technology establishes decentralized trust, offering immutable audit trails and smart contract-driven policy execution for cryptographically assured actions. Third, a high-availability substrate ensures the underlying network can support these intelligent operations. A systematic review and thematic meta-analysis of contemporary literature confirm that the synergistic integration of these technologies creates a transformative "cognitive resilience loop." This loop enables continuous AI-driven monitoring, blockchain-verified decision-making, and assured, self- healing actuation. The architecture directly addresses the limitations of static, manual defenses, advancing toward autonomous, trustworthy, and resilient digital infrastructures for critical applications.

Keywords : AI-Enabled ICT Resilience, High-Availability Communication Systems, Secure Network Architecture, Blockchain- Assured Communication, Fault-Tolerant System Design, and AI-Driven Security and Reliability.

References :

  1. Check Point Research. (2023). Cyber Security Report 2023: The Year of Mega Ransomware & Supply Chain Attacks. Check Point Software Technologies Ltd.
  2. Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33.
  3. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1-58.
  4. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
  5. Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems, 4(3), 382-401.
  6. Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
  7. Mao, H., Alizadeh, M., & Menache, I. (2016). Resource management with deep reinforcement learning. Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 50-56.
  8. Cheng, L., Wang, Y., & Liu, J. (2023). Graph neural networks for anomaly detection in large-scale network traffic. IEEE Transactions on Network and Service Management,  20 (1), 45-58.
  9. Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., & Xiang, Y. (2021). A blockchained federated learning framework for cognitive computing in industrial IoT. IEEE Transactions on Industrial Informatics,  17 (4), 2964-2973.
  10. Almeida, J. C., Oliveira, R., & Luís, M. (2022). Blockchain-based decentralized management of 5G network slices: A survey. IEEE Communications Surveys & Tutorials,  24 (2), 1126-1159.
  11. Chowdhury, M. M., Rahman, A., & Islam, R. (2022). A transformer-based framework for multivariate time-series anomaly detection in 5G core networks. IEEE Transactions on Network and Service Management, 19(3), 2102-2114.
  12. Mouradian, C., Kianpisheh, S., & Glitho, R. H. (2021). AI-driven security orchestration, automation and response for zero-touch network slicing in 5G. IEEE Network, 35(6), 294-300.
  13. Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
  14. Samarakoon, S., Bennis, M., Saad, W., & Debbah, M. (2021). Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Transactions on Communications, 69(2), 1146-1159.
  15. Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., ... & Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031-2063.
  16. Rahman, S., Tout, H., & Talhi, C. (2023). Trustworthy federated learning for resilient and secure industrial IoT edge networks. IEEE Internet of Things Journal, 10(5), 4520-4534.
  17. Hammi, M. T., Hammi, B., Bellot, P., & Serhrouchni, A. (2018). Bubbles of Trust: A decentralized blockchain-based authentication system for IoT. Computers & Security,  78 , 126-142.
  18. Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., & Buyya, R. (2020). Blockchain-based trust management in cloud computing systems: A taxonomy, review and future directions. Journal of Cloud Computing,  9 (1), 1-34.
  19. Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials,  21 (3), 2794-2830.
  20. Fernández-Caramés, T. M., & Fraga-Lamas, P. (2020). Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE Access,  8 , 21091-21116.
  21. Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal,  5 (2), 1184-1195.
  22. Almeida, J. C., Oliveira, R., & Luís, M. (2022). Blockchain-based decentralized management of 5G network slices: A survey. IEEE Communications Surveys & Tutorials,  24 (2), 1126-1159.
  23. Din, I. U., Guizani, M., Hassan, S., Kim, B. S., Khan, M. K., Atiquzzaman, M., & Ahmed, S. H. (2021). Trust management for blockchain-enabled IoT devices: A systematic literature review. IEEE Internet of Things Journal,  8 (8), 6546-6566.
  24. Pan, X., Chen, L., & Xu, X. (2020). Decentralized AI-powered cybersecurity framework using blockchain. Computers & Security,  95 , 101849.
  25. Jiang, Y., Wang, C., Wang, Y., & Gao, L. (2022). A blockchain-based federated learning framework for secure and trustworthy smart city services. IEEE Internet of Things Journal,  9 (18), 17778-17789.
  26. Meng, W., Li, W., Tug, S., & Tan, J. (2022). A blockchain and AI-based automated security management framework for Industrial IoT. IEEE Transactions on Industrial Informatics,  18 (5), 2964-2975.
  27. Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., & Xiang, Y. (2021). A blockchained federated learning framework for cognitive computing in industrial IoT. IEEE Transactions on Industrial Informatics,  17 (4), 2964-2973.
  28. Din, I. U., Guizani, M., Hassan, S., Kim, B. S., Khan, M. K., Atiquzzaman, M., & Ahmed, S. H. (2021). Trust management for blockchain-enabled IoT devices: A systematic literature review. IEEE Internet of Things Journal,  8 (8), 6546-6566.
  29. Wang, H., Qin, H., Zhao, M., Wei, X., Shen, H., & Susilo, W. (2022). Blockchain-based fair and trustworthy data trading with decentralized federated learning. IEEE Transactions on Neural Networks and Learning Systems.
  30. Li, Z., Liu, J., Hao, J., & Wang, H. (2023). BC-SDN: A blockchain-secured software-defined networking architecture for resilient and trustworthy network slicing. IEEE Transactions on Network Science and Engineering,  10 (2), 879-892.
  31. Liang, F., Yu, W., An, D., Yang, Q., Fu, X., & Zhao, W. (2022). A survey on big data market: Pricing, trading and protection. IEEE Access,  6 , 15132-15154.
  32. Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J. (2018). Untangling blockchain: A data processing view of blockchain systems. IEEE Transactions on Knowledge and Data Engineering,  30 (7), 1366-1385.
  33. Huang, J., Kong, L., Chen, G., Wu, M., Liu, X., & Zeng, P. (2021). Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism. IEEE Transactions on Industrial Informatics,  17 (8), 5280-5288.
  34. Arsiè, D., Callegaro, F., & Tiribelli, S. (2023). Trustworthy AI and blockchain for cybersecurity: A survey on explainability and accountability. Computer Science Review,  47 , 100532.
  35. De Filippi, P., Mannan, M., & Reijers, W. (2020). Blockchain as a confidence machine: The problem of trust & challenges of governance. Technology in Society,  62 , 101284.
  36. Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., ... & Lim, C. K. (2022). Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. Journal of Medical Systems,  46 (3), 1-33.
  37. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., & Luo, W. (2021). DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing,  18 (5), 2438-2455.
  38. Hamon, R., Junklewitz, H., & Sanchez, I. (2022). Bridging the gap between AI and explainability in the EU regulatory framework. Journal of Responsible Technology,  11 , 100043.
  39. Singh, A., Click, K., & Parizi, R. M. (2023). Adversarial machine learning in blockchain-enabled federated learning: A systematic review. Computers & Security,  124 , 102982.
  40. Paulraj, J., Raghuraman, B., Gopalakrishnan, N., & Otoum, Y. (2025). Autonomous AI-Based Cybersecurity Framework for Critical Infrastructure: A Real-Time Threat Mitigation Approach. arXiv preprint arXiv:2507.07416v1.
  41. El-Hajj, M. (2025). Enhancing Communication Networks in the New Era with Artificial Intelligence: Techniques, Applications, and Future Directions. Network, 5(1), 1. https://doi.org/10.3390/network5010001
  42. Kumar, K., Kumar, V., Seema, Sharma, M. K., Khan, A. A., & Idrisi, M. J. (2024). A Systematic Review of Blockchain Technology Assisted with Artificial Intelligence Technology for Networks and Communication Systems. Journal of Computer Networks and Communications, 2024, 1–15. https://doi.org/10.1155/2024/9979371
  43. Shamsan Saleh, A. M. (2024). Blockchain for secure and decentralized artificial intelligence in cybersecurity: A comprehensive review. Blockchain: Research and Applications, 5(3), 100193. https://doi.org/10.1016/j.bcra.2024.100193
  44. Lizos, K. A., Maglaras, L., Petrovik, E., El-atty, S. M. A., Tsachtsiris, G., & Ferrag, M. A. (2025). Reliability and Resilience of AI-Driven Critical Network Infrastructure under Cyber-Physical Threats (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2510.19295
  45. Liem, A. T., Hwang, I.-S., Kharga, R., & Teng, C.-H. (2024). Enhancing Tactile Internet Reliability: AI-Driven Resilience in NG-EPON Networks. Photonics, 11(10), 903. https://doi.org/10.3390/photonics11100903
  46. Yadav, N., & Kanvaria, V. K. (2025). AI-Driven Cyber Threats: The New Frontier in Digital Security. Thiagarajar College of Preceptors Edu Spectra, 7(2), 15–21. https://doi.org/10.34293/eduspectra.v7i2.03
  47. Han, D., Jiao, D., & Tu, Y. (2025). Artificial Intelligence, Energy Consumption Intensity, and Supply Chain Resilience in China’s ICT Manufacturing Industry. Sustainability, 17(22), 10253. https://doi.org/10.3390/su172210253
  48. Bucovețchi, O., Voipan, A. E., Voipan, D., & Stanciu, R. D. (2025). Redefining Organizational Resilience and Success: A Natural Language Analysis of Strategic Domains, Semantics, and AI Opportunities. Systems, 13(11), 999. https://doi.org/10.3390/systems13110999
  49. Chauhan, C., Laxkar, P., Solanki, R. K., Parihar, S., Rajawat, A. S., & Gadekar, A. R. (2025). Blockchain-Based Framework for Secure Communication in Smart IoT Systems. Journal of Computers, Mechanical and Management, 4(4), 10–18. https://doi.org/10.57159/jcmm.4.4.25209
  50. Babu, E. S., Rao, M. S., Swain, G., Nikhath, A. K., & Kaluri, R. (2023). Fog‐Sec: Secure end‐to‐end communication in fog‐enabled IoT network using permissioned blockchain system. International Journal of Network Management, 33(5). https://doi.org/10.1002/nem.2248
  51. Wazid, M., Das, A. K., Shetty, S., Rodrigues, J. J. P. C., & Guizani, M. (2023). AISCM-FH: AI-Enabled Secure Communication Mechanism in Fog Computing-Based Healthcare. IEEE Transactions on Information Forensics and Security, 18, 319–334. https://doi.org/10.1109/tifs.2022.3220959
  52. Wazid, M., Das, A. K., & Park, Y. (2021). Blockchain‐enabled secure communication mechanism for IoT‐driven personal health records. Transactions on Emerging Telecommunications Technologies, 33(4). https://doi.org/10.1002/ett.4421
  53. Himdi, T. (2024). A Blockchain and AI-Driven Security Framework for Enhancing Cybersecurity in Cognitive Cities. Advances in Artificial Intelligence and Machine Learning, 04(04), 2908–2926. https://doi.org/10.54364/aaiml.2024.44169
  54. Khan, A. A., Laghari, A. A., Alroobaea, R., Baqasah, A. M., Alsafyani, M., Bacarra, R., & Alsayaydeh, J. A. J. (2024). Secure Remote Sensing Data With Blockchain Distributed Ledger Technology: A Solution for Smart Cities. IEEE Access, 12, 69383–69396. https://doi.org/10.1109/access.2024.3401591
  55. Evangeline, C. S., Kumaravelu, V. B., Murugadass, A., Imoize, A. L., Selvaprabhu, P., & Naskath, J. (2025). BSHR‐FA: A Blockchain‐Enabled Secure Hierarchical Routing Using Firefly Algorithm for VANETs. SECURITY AND PRIVACY, 8(3). https://doi.org/10.1002/spy2.70045
  56. Dhinesh, M., Kirubagaran, K., & Venugopal, E. (2024). An Internet of Things Assisted Blockchain based Secure and Transparent Data Communication between Entities. 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 619–625. https://doi.org/10.1109/i-smac61858.2024.10714837
  57. Alkwai, L. M., & Yadav, K. (2024). Blockchain-Based Secure 5G/6G Communication for Internet of Things Devices in Consumer Electronic Systems. IEEE Transactions on Consumer Electronics, 70(3), 6327–6338. https://doi.org/10.1109/tce.2024.3454299
  58. Wazid, M., Bera, B., Das, A. K., Garg, S., Niyato, D., & Hossain, M. S. (2021). Secure Communication Framework for Blockchain-Based Internet of Drones-Enabled Aerial Computing Deployment. IEEE Internet of Things Magazine, 4(3), 120–126. https://doi.org/10.1109/iotm.1001.2100047
  59. Hafeez, S., Khan, A. R., Al-Quraan, M. M., Mohjazi, L., Zoha, A., Imran, M. A., & Sun, Y. (2023). Blockchain-Assisted UAV Communication Systems: A Comprehensive Survey. IEEE Open Journal of Vehicular Technology, 4, 558–580. https://doi.org/10.1109/ojvt.2023.3295208
  60. Chenna, S. (2023). AI and Blockchain: Towards Trustworthy and Secure Intelligent Systems. Journal of Advances in Artificial Intelligence, 1(2), 117–122. https://doi.org/10.18178/jaai.2023.1.2.117-122
  61. Alenizi, A., Mishra, S., & Baihan, A. (2024). Enhancing secure financial transactions through the synergy of blockchain and artificial intelligence. Ain Shams Engineering Journal, 15(6), 102733. https://doi.org/10.1016/j.asej.2024.102733
  62. Sojitra, M., Jadav, N. K., Gupta, R., Patel, U., Patel, J., Tanwar, S., Pau, G., Alqahtani, F., & Tolba, A. (2025). Interplay of ML and blockchain for secure Internet of Military Vehicles communication underlying 5G. Ad Hoc Networks, 178, 103968. https://doi.org/10.1016/j.adhoc.2025.103968
  63. Purandhar, N., Sincija, C., Ali, A. M., Menakadevi, B., Anist, A., & Bie, M. (2025). Secure and Decentralized AI for Smart Cities: A Federated Learning and Blockchain–Enabled Predictive Analytics Framework. CompSci & AI Advances, 02(01), 13–24. https://doi.org/10.69626/cai.2025.0013
  64. Khan, S., Khan, M., Khan, M. A., Khan, M. A., Wang, L., & Wu, K. (2025). A Blockchain-Enabled AI-Driven Secure Searchable Encryption Framework for Medical IoT Systems. IEEE Journal of Biomedical and Health Informatics, 1–14. https://doi.org/10.1109/jbhi.2025.3538623
  65. Iordache, S., Patilea, C. C., & Paduraru, C. (2024). Enhancing Autonomous Vehicle Safety with Blockchain Technology: Securing Vehicle Communication and AI Systems. Future Internet, 16(12), 471. https://doi.org/10.3390/fi16120471
  66. Nair, A. R., Jadav, N. K., Gupta, R., & Tanwar, S. (2022). AI-empowered Secure Data Communication in V2X Environment with 6G Network. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 1–6. https://doi.org/10.1109/infocomwkshps54753.2022.9797928
  67. Williams, K. L., Prasanth, Y. D., & Jeyaselvi, M. (2024). Hybrid AI Architecture using Edge-Cloud Computing for Secure V2X Communication. 2024 9th International Conference on Communication and Electronics Systems (ICCES), 913–920. https://doi.org/10.1109/icces63552.2024.10859430
  68. Oseremen Owobu, W., Anthony Abieba, O., Gbenle, P., Paul Onoja, J., Ifesinachi Daraojimba, A., Hassanat Adepoju, A., & Bright Chibunna, U. (2024). Review of Enterprise Communication Security Architectures for Improving Confidentiality Integrity and Availability in Digital Workflows. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 1417–1426. https://doi.org/10.62225/2583049x.2024.4.6.4024
  69. Leshchev, S. V. (2022). Artificial Intelligence Limitations: Blockchain Trust and Communication Transparency. In Studies in Computational Intelligence (pp. 249–254). Springer International Publishing. https://doi.org/10.1007/978-3-030-96993-6_25
  70. Afolabi, A., Ogunrinde, O., & Zabihollah, A. (2025). Digital Twin and AI Models for Infrastructure Resilience: A Systematic Knowledge Mapping. Applied Sciences, 15(24), 13135. https://doi.org/10.3390/app152413135
  71. Liu, X., & Xu, R. (2025). BIMW: Blockchain-Enabled Innocuous Model Watermarking for Secure Ownership Verification. Future Internet, 17(11), 490. https://doi.org/10.3390/fi17110490

This research proposes a unified AI-Enabled ICT Resilience Architecture for next-generation communication systems demanding ultra-high availability, security, and verifiable trust. It synthesizes three core pillars into a coherent framework. First, AI and machine learning provide predictive, adaptive resilience through real-time anomaly detection and automated response. Second, blockchain technology establishes decentralized trust, offering immutable audit trails and smart contract-driven policy execution for cryptographically assured actions. Third, a high-availability substrate ensures the underlying network can support these intelligent operations. A systematic review and thematic meta-analysis of contemporary literature confirm that the synergistic integration of these technologies creates a transformative "cognitive resilience loop." This loop enables continuous AI-driven monitoring, blockchain-verified decision-making, and assured, self- healing actuation. The architecture directly addresses the limitations of static, manual defenses, advancing toward autonomous, trustworthy, and resilient digital infrastructures for critical applications.

Keywords : AI-Enabled ICT Resilience, High-Availability Communication Systems, Secure Network Architecture, Blockchain- Assured Communication, Fault-Tolerant System Design, and AI-Driven Security and Reliability.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe