Evaluating the Performance of Vapor Compression Cycle by Adding Nanoparticle


Authors : Utkarsh patil; Rhutuja Tomake; Shreeram Mali; Karan Jankar; Aniket Mengane; Shubham Mirjkar

Volume/Issue : Volume 9 - 2024, Issue 6 - June

Google Scholar : https://tinyurl.com/mr3rcwan

Scribd : https://tinyurl.com/bpr68yy2

DOI : https://doi.org/10.38124/ijisrt/IJISRT24JUN024

Abstract : The discusses the improvements in refrigeration systems using nano-refrigerants or nanofluids.It explores the compatibility, stability, and feasibility of using nanofluids in refrigeration systems, and how the performance of Al2O3 nanoparticle-based nanofluids can enhance the efficiency of vapor compression refrigeration systems. Additionally, it discusses a study on the impact of polyester oil-based multiwalled carbon nanotube nano lubricants on both the evaporator's heat dissipation and the compressor's power consumption in a refrigerator. One ofthe potential heat transfer fluids in refrigeration systems is nano refrigerant, which can significantly improve the performance of vapor compression refrigerator systems. The study found that including nanoparticles in the refrigerant increases viscosity, thermal conductivity, and density, leading to enhanced heat transfer coefficients of performance and a reduction in power consumption.

References :

  1. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in International Mechanical Engineering Congress & Exposition, ASME, San Fransisco, 1995. https://www.osti.gov/biblio/196525-enhancingthermal- conductivity-fluids- nanoparticles
  2. S. Lee, -S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Trans. ASME. 121 (1999) 280–289.
  3. S. Shan Bi, L. Shi, L. li Zhang, Application of nanoparticles in domestic refrigerators Applied Thermal Engineering. 28 2008 1834 1843 10.1016/j. applthermaleng.2007.11.018.

System, Procedia Manufacturing. Elsevier B.V. (2019) 112–117, https://doi.org/ 10.1016/j.promfg.2019.05.012.

  1. V. Nair, A.D. Parekh, P.R. Tailor, Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture, Int. J. Refrig. 112 (2020) 21–36, https://doi.org/10.1016/j.ijrefrig.2019.12.009.
  2. J.K. Lee, J. Koo, H. Hong, Y.T. Kang, The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids, Int. J. Refrig. 33 (2010) 269– 275, https://doi.org/10.1016/j.ijrefrig.2009.10.004.
  3. V.M. v. Padmanabhan, S. Palanisamy, The use of TiO 2 nanoparticles to reduce refrigerator ir-reversibility Energy Conversion and Management. 59 2012 122 132 10.1016/j.enconman.2012.03.002.
  4. D. Elcock, Potential impacts of nanotechnology on energy transmission applications and needs, Argonne National Lab.(ANL), Argonne, IL (United States), 2007.
  5. C. Choi, H.S. Yoo, J.M. Oh, Preparation and heat transfer properties of nanoparticle-in- transformer oil dispersions as advanced energy-efficient coolants, Curr. Appl. Phys. 8 (6) (2008) 710–712.
  6. V. Nair, P.R. Tailor, A.D. Parekh, Nanorefrigerants: A comprehensive review on its past, present and future, Int. J. Refrig. 67 (2016) 290–307.
  7. W. Azmi, et al., Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review, Renew. Sustain. Energy Rev. 69 (2017) 415–428.
  8. M.Z. Sharif, et al., Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants – A review, Int. Commun. Heat Mass Transfer 92 (2018) 56–63.
  9. O.A. Alawi, N.A.C. Sidik, M.h. Beriache, Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review, Int. Commun. Heat Mass Transfer 68 (2015) 91-97.
  10. C.-S. Jwo, L.-Y. Jeng, T.-P. Teng, H. Chang, Effects of nanolubricant on the performance of hydrocarbon refrigerant system, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 27 (2009) 1473, https://doi.org/10.1116/1.3089373.
  11. S. Kumar, R. Elansezhian, Experimental Study on Al2O3-R134a Nano Refrigerant in Refrigeration System, International Journal of Modern Engineering Research (IJMER), Vol. 2, Issue. 5, pp-3927-3929.
  12. A.M.A. Soliman, S.H. Taher, A.K. Abdel-Rahman, S. Ookawara, Performance Enhancement of Vapor Compression Cycle Using Nano Materials, International Conference on Renewable Energy Research and Applications Proceedings.
  13. T.M. Yusof, A.M. Arshad, M.D. Suziyana, L.G. Chui, M.F. Basrawi, Experimental study of a domestic refrigerator with POE-Al2O3 nanolubricant, Int. J. Automot. Mech. Eng. 11 (2015) 2243–2252.
  14. M. Aktas, A.S. Dalkilic, A. Celen, A. Cebi, O. Mahian, S. Wongwises, A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor- Compression Refrigeration Cycle, Hindawi publishing corporation, Article ID 138725.
  15. Sözen, E. Özbas_, T. Menlik, M.T. Çakir, M. Gürü, K. Boran, Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study, Int. J. Refrig 44 (2014) 73–80, https://doi.org/10.1016/j.ijrefrig.2014.04.018.
  16. F. Jiang, J. Zhu, G. Xin, Experimental investigation on Al2O3-R123 nanorefrigerant heat transfer performances in evaporator based on organic Rankine cycle, Int. J. Heat Mass Transf. 127 (2018) 145–153, https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.061.
  17. O.O. Ajayi, D.E. Ukasoanya, M. Ogbonnaya, E.Y. Salawu, I.P. Okokpujie, S.A. Akinlabi, E.T. Akinlabi, F.T. Owoeye, Investigation of the effect of R134a/Al2O3 -nanofluid on the performance of a domestic vapour compression refrigeration
  18. W.H. Azmi, et al., Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review, Renew. Sustain. Energy Rev. 69 (2017) 415–428.
  19. W.H. Azmi, et al., Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, Int. Commun. Heat Mass Transfer 59 (2014) 30–38.
  20. R. Wang, et al., A refrigerating system using HFC134a and mineral lubricant appended with n-TiO2 (R) as working fluids, Tsinghua University Press, Beijing, China, 2003.
  21. W. Jiang, G. Ding, K. Wang, Calculation of the conductivity of nanorefrigerant based on particles aggregation theory, J.-Shanghai Jiaotong University-Chinese Edition 40 (8) (2006) 1272.
  22. M.A. Kedzierski, M. Gong, Effect of CuO nanolubricant on R134a pool boiling heat transfer, Int. J. Refrig. 32 (5) (2009) 791–799
  23. K. Bartelt, et al., Flow-boiling of R-134a/POE/CuO nanofluids in a horizontal tube, 2008
  24. R. Downing, History of the organic fluorine industry, Kirk-Othmer Encycl. Chem. Technol. 9 (1966) 704–707.
  25. P. Brohan, et al., Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res. Atmos. 111 (D12) (2006).
  26. E. Gao, et al., A review of application status and replacement progress of refrigerants in the Chinese cold chain industry, Int. J. Refrig. 128 (2021) 104–117.
  27. V. Nair, HFO refrigerants: A review of present status and future prospects, Int. J. Refrig. 122 (2021) 156–170.
  28. H. Peng, et al., Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrig. 32 (6) (2009) 1259–1270.
  29. V. Trisaksri, S. Wongwises, Nucleate pool boiling heat transfer of TiO2–R141b nanofluids, Int. J. Heat Mass Transf. 52 (5) (2009) 1582–1588.
  30. N. Sezer, M.A. Atieh, M. Koç, A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids, Powder Technol. 344 (2019) 404–431.
  31. D. Elcock, Potential impacts of nanotechnology on energy transmission applications and needs, Argonne National Lab.(ANL), Argonne, IL (United States), 2007.
  32. C. Choi, H.S. Yoo, J.M. Oh, Preparation and heat transfer properties of nanoparticle-in- transformer oil dispersions as advanced energy-efficient coolants, Curr. Appl. Phys. 8 (6) (2008) 710–712.
  33. V. Nair, P.R. Tailor, A.D. Parekh, Nanorefrigerants: A comprehensive review on its past, present and future, Int. J. Refrig. 67 (2016) 290–307.
  34. W. Azmi, et al., Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review, Renew. Sustain. Energy Rev. 69 (2017) 415–428.
  35. M.Z. Sharif, et al., Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants – A review, Int. Commun. Heat Mass Transfer 92 (2018) 56–63.
  36. O.A. Alawi, N.A.C. Sidik, M.h. Beriache, Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review, Int. Commun. Heat Mass Transfer 68 (2015) 91-97.
  37. W.H. Azmi, et al., Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review, Renew. Sustain. Energy Rev. 69 (2017) 415–428.
  38. W.H. Azmi, et al., Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, Int. Commun. Heat Mass Transfer 59 (2014) 30–38.
  39. R. Wang, et al., A refrigerating system using HFC134a and mineral lubricant appended with n-TiO2 (R) as working fluids, Tsinghua University Press, Beijing, China, 2003.
  40. W. Jiang, G. Ding, K. Wang, Calculation of the conductivity of nanorefrigerant based on particles aggregation theory, J.-Shanghai Jiaotong University-Chinese Edition 40 (8) (2006) 1272.
  41. M.A. Kedzierski, M. Gong, Effect of CuO nanolubricant on R134a pool boiling heat transfer, Int. J. Refrig. 32 (5) (2009) 791–799.
  42. K. Bartelt, et al., Flow-boiling of R-134a/POE/CuO nanofluids in a horizontal tube, 2008 CP AROARA by Refrigeration and air conditioning
  43. V. Trisaksri, S. Wongwises, Nucleate pool boiling heat transfer of TiO2–R141b nanofluids, Int. J. Heat Mass Transf. 52 (5) (2009) 1582–1588
  44. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, Volume 43 Issue 19, Pages 3701-3707 https://doi.org/10.1016/S0017-9310(99)00369-5.
  45. L. Cremaschi, A.A.M. Bigi, T. Wong, P. Deokar, Thermodynamic properties of Al2O3 nanolubricatns: Part 1- Effects on the two-phase pressure drop, Sci. Technol. Built Environ. 21 (2015) 607–620.
  46. V. Bianco, O. Manca, S. Nardini, Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature, Energy 77 (2014) 403–413.
  47. O.A. Alawi, J.M. Salih, A. Mallah, Thermo-physical properties effectiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant, Int. Commun. Heat Mass Tran. 103 (2019) 54–61, https://doi.org/10.1016/j.icheatmasstransfer.2019.02.011.
  48. L. Yang, Y. Hu, Toward TiO2 nanofluids—Part 2: applications and challenges, Nanoscale Res. Lett. 12 (1) (2017), https://doi.org/10.1186/s11671-017-2185-7.
  49. S. Rahman, S. Issa, Z. Said, M. El Haj Assad, R. Zadeh, Y. Barani, Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT/R-407c nano refrigerant, Case Stud. Therm. Eng. 16 (2019), 100565, https://doi.org/10.1016/j.csite.2019.100565.
  50. M.A.M. Soheel S.M.H., Energy Observation Technique for Vapour Absorption Using Nano Fluid Refrigeration | International Journal of Advanced Science and Technology, 2020, May http://sersc.org/journals/index.php/IJAST/article/view/22608.
  51. D. Ambhore, A. Tiwari, U. Patel, J. Patil, M. Ramachandran, Effect of aluminum oxide nano filler in tetrafluoroethane (R-134a) refrigerant, IOP Conf. Ser. Mater. Sci. Eng. 810 (1) (2020), 012018, https://doi.org/10.1088/1757-899x/810/1/012018.
  52. D.G. Subhedar, J.Z. Patel, B.M. Ramani, Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant, Aust. J. Mech. Eng. 20 (4) (2020) 1136–1141, https://doi.org/10.1080/14484846.2020.1784558.
  53. Mahbubul, S. Fadhilah, R. Saidur, K. Leong, M. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants, Int. J. Heat Mass Tran. 57 (1) (2013) 100–108, https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007.
  54. S.S. Chauhan, R. Kumar, S.P.S. Rajput, Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nano lubricant using experimental method, J. Braz. Soc. Mech. Sci. Eng. 41 (4) (2019), https://doi.org/10.1007/s40430-019-1657- 3.
  55. S. Bi, K. Guo, Z. Liu, J. Wu, Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid, Energy Convers. Manag. 52 (1) (2011) 733–737, https://doi.org/10.1016/j.enconman.2010.07.052.
  56. J. Parkash, S. Saini, A. Kohli, B. Singh, Comparative analysis of thermohydraulic properties of nano-refrigerants, Int. J. Eng. Adv. Technol. 7 (4) (2018) 34, https://doi.org/10.14419/ijet.v7i4.12.20988, m. Anushanagaswapnasri, n.V.V. S. Sudheer, k.C.H. Kishorkumar, Experimental investigation on effect of nano lubrication in a VCR system using R410a refrigerant with Al2O3 nanoparticles, Int. J. Mech. Prod. Eng. Res. Dev. 10 (3) (2020) 1761–1768.
  57. Peyyala, M.N.S. Sri, N. Sudheer, K.C.K. Kumar, Experimental investigation on effect of Nano lubrication in a VCR system using R410A Refrigerant with Al2O3 nanoparticles, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249–6890; ISSN (E): 2249–8001 10 (Issue 3) (2020) 1761–1768.
  58. A.C. Yilmaz, Performance evaluation of a refrigeration system using nanolubricant, Appl. Nanosci. 10 (5) (2020) 1667–1678, https://doi.org/10.1007/s13204- 020-01258-5.
  59. K. Bartelt, Flow-Boiling of R-134a/POE/CuO Nanofluids in a Horizontal Tube, Purdue e- Pubs, 2008. https://docs.lib.purdue.edu/iracc/928/.
  60. A. Katoch, F.A. Razak, A. Suresh, B. BS, E. Gundabattini, Performance analysis of nano- refrigerants used in the vapor compression refrigeration system using MATLAB-Simulink, Proc.   IME        C             J.             Mech.     Eng.        Sci.          236         (12)                (2022)    6948–6966, https://doi.org/10.1177/09544062211069886
  61. S. Kumar, B. Kanimozhi, M. Sunil Kumar, Performance evaluation of refrigeration system using nano-fluid, Mater. Today: Proc. 44 (2021) 3838–3845, https:// doi.org/10.1016/j.matpr.2020.12.339.
  62. D.S. Adelekan, O.S. Ohunakin, T.O. Babarinde, M.K. Odunfa, R.O. Leramo, S.O. Oyedepo, D.C. Badejo, Experimental performance of LPG refrigerant charges with varied concentration of TiO 2 nano-lubricants in a domestic refrigerator, Case Stud. Therm. Eng. 9 (2017) 55–61, https://doi.org/10.1016/j. csite.2016.12.002.
  63. A.K. Dhamneya, S. Rajput, A. Singh, Comparative performance analysis of ice plant test rig with TiO 2 -R-134a nano refrigerant and evaporative cooled condenser, Case Stud. Therm. Eng. 11 (2018) 55–61, https://doi.org/10.1016/j.csite.2017.12.004.
  64. Katoch, F. Abdul Razak, A. Suresh, B.S. Bibin, E. Gunda bating, M.Z. Yusoff, Performance of nanoparticles in refrigeration systems: a review, Journal of Nanofluids 11 (4) (2022) 469–486, https://doi.org/10.1166/jon.2022.1809.
  65. Yogesh Joshi Performance investigation of vapor compression refrigeration system using R134a and R600a                refrigerants and Al2O3 nanoparticle-based suspensionhttps://doi.org/10.1016/j.matpr.2020.11.732
  66. Zafar Said , Shek M.A. Rahman , Maham A. Sohail ,Ammar M. Bahman , Mohammad Alim , Saboor Shaik , Ali M. Radwan ,Ibrahim I. El-Sharkawy Nano-refrigerants and nano- lubricants in refrigeration: Synthesis, mechanisms, applications, and challenges https://doi.org/10.1016/j.applthermaleng.2023.121211
  67. Bibin B.S, Edison Gundabattini,Investigation on transport properties, heat transfer characteristics and pressure drop of CuO enhanced R1234yf based refrigerant https://doi.org/10.1016/j.csite.2023.103229

The discusses the improvements in refrigeration systems using nano-refrigerants or nanofluids.It explores the compatibility, stability, and feasibility of using nanofluids in refrigeration systems, and how the performance of Al2O3 nanoparticle-based nanofluids can enhance the efficiency of vapor compression refrigeration systems. Additionally, it discusses a study on the impact of polyester oil-based multiwalled carbon nanotube nano lubricants on both the evaporator's heat dissipation and the compressor's power consumption in a refrigerator. One ofthe potential heat transfer fluids in refrigeration systems is nano refrigerant, which can significantly improve the performance of vapor compression refrigerator systems. The study found that including nanoparticles in the refrigerant increases viscosity, thermal conductivity, and density, leading to enhanced heat transfer coefficients of performance and a reduction in power consumption.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe