Future Trends and Opportunities in Structured Electrical Power Systems


Authors : Pulluri Nirath Kumar; Rallabandi Karthik Kumar; Joginapalli Ajay; Tadakala Sai Shivankar; Md. Inthiyaz; Jala Sai Kumar

Volume/Issue : Volume 10 - 2025, Issue 11 - November


Google Scholar : https://tinyurl.com/mrra5n4e

Scribd : https://tinyurl.com/ef8a6bpu

DOI : https://doi.org/10.38124/ijisrt/25nov147

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : The power systems industry is experiencing a paradigm shift, driven by rapid technological advancements, decarbonization initiatives, and digital transformation. As nations move toward achieving net-zero emissions, the integration of renewable energy sources such as solar and wind has become vital. The future of power systems is increasingly defined by decentralized generation, artificial intelligence, smart grids, and digital control technologies. This transformation is also enhanced by innovations in energy storage, electric mobility, and automation, which are enabling more flexible and reliable networks. The combination of these developments is leading to a more resilient, efficient, and sustainable global energy ecosystem. The evolution of smart grids and IoT-based monitoring is reshaping system operations, while AI enables predictive maintenance and real-time optimization. Furthermore, energy storage technologies play a crucial role in stabilizing renewable energy generation and ensuring reliability. This paper explores these future trends and highlights the immense opportunities in power systems engineering for innovation, employment, and sustainability. The synergy between renewable integration, energy storage, and intelligent control forms the foundation of the next-generation energy landscape, driving global progress toward clean and inclusive energy for all.

Keywords : Power Systems, Highvoltage DC Transmission Systems, Multi Teminal DC Systems, Voltage Sourcs Converters.

References :

  1. N. Nireekshana, R. Ramachandran, and G. V. Narayana, “A New Soft Computing Fuzzy Logic Frequency Regulation Scheme for Two Area Hybrid Power Systems,” Int. J. Electr. Electron. Res., vol. 11, no. 3, pp. 705–710, 2023.
  2. N. Nireekshana, R. Ramachandran, and G. V. Narayana, “An innovative fuzzy logic frequency regulation strategy for two-area power systems,” Int. J. Power Electron. Drive Syst. IJPEDS, vol. 15, no. 1, pp. 603–610, 2024.
  3. N. Nireekshana, R. Ramachandran, and G. Narayana, “A Novel Swarm Approach for Regulating Load Frequency in Two-Area Energy Systems,” Int J Electr Electron Res, vol. 11, pp. 371–377, 2023.
  4. N. Namburi Nireekshana and K. R. Kumar, “A Modern Distribution Power Flow Controller With A PID-Fuzzy Approach: Improves The Power Quality”, Accessed: Oct. 28, 2025. [Online]. Available: https://www.academia.edu/download/112956747/ijeer_120124.pdf
  5. N. Nireekshana, R. R. Chandran, and G. V. Narayana, “Frequency Regulation in Two Area System with PSO Driven PID Technique,” J Power Electron Power Syst, vol. 12, no. 2, pp. 8–20, 2022.
  6. N. Nireekshana, R. Ramachandran, and G. V. Narayana, “Novel Intelligence ANFIS Technique for Two-Area Hybrid Power System’s Load Frequency Regulation,” in E3S Web of Conferences, EDP Sciences, 2024, p. 02005. Accessed: Oct. 28, 2025. [Online]. Available: https://www.e3s-conferences.org/articles/e3sconf/abs/2024/02/e3sconf_icregcsd2023_02005/e3sconf_icregcsd2023_02005.html
  7. N. Nireekshana, A. Archana, and K. Pullareddy, “A Classical H6 Topology for Modern PV Inverter Design,” in Power Energy and Secure Smart Technologies, CRC Press, 2025, pp. 1–7. Accessed: Oct. 31, 2025. [Online]. Available: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003661917-1/classical-h6-topology-modern-pv-inverter-design-namburi-nireekshana-archana-pullareddy-kanth-rajini
  8. C. P. Prasad and N. Nireekshan, “A Higher Voltage Multilevel Inverter with Reduced Switches for Industrial Drive,” Int. J. Sci. Eng. Technol. Res. IJSETR, vol. 5, no. 1, 2016, Accessed: Oct. 29, 2025. [Online]. Available: https://methodist.edu.in/web/uploads/naac/2019-11-19%2012_24_22pm%2092.pdf
  9. N. Nireekshana, “A POD Modulation Technique Based Transformer less HERIC Topology for PV Grid Tied-Inverter,” in E3S Web of Conferences, EDP Sciences, 2025, p. 01001. Accessed: Oct. 29, 2025. [Online]. Available: https://www.e3s-conferences.org/articles/e3sconf/abs/2025/16/e3sconf_icregcsd2025_01001/e3sconf_icregcsd2025_01001.html
  10. [N. Nireekshana, R. Ramachandran, and G. V. Narayana, “A Peer Survey on Load Frequency Contol in Isolated Power System with Novel Topologies,” Int J Eng Adv Technol IJEAT, vol. 11, no. 1, pp. 82–88, 2021.
  11. N. NIREEKSHANA, R. Ramachandran, and G. V. Narayana, “An intelligent technique for load frequency control in hybrid power system,” 2023, Accessed: Oct. 31, 2025. [Online]. Available: https://www.academia.edu/download/107660997/latest.pdf
  12. N. Nireekshana, R. R. Chandran, and G. V. Narayana, “Frequency Regulation in Two Area System with PSO Driven PID Technique,” J Power Electron Power Syst, vol. 12, no. 2, pp. 8–20, 2022.
  13. N. NIREEKSHANA, A. SHIVA, A. FURKHAN, M. SRIDHAR, A. OMPRAKASH, and K. K. SHIVA, “SIX PULSE TYPE SEGMENTED THYRISTOR CONTROLLED REACTOR WITH FIXED CAPACITOR FOR REACTIVE POWER COMPENSATION,” Int. J., pp. 3153–3159, 2024.
  14. N. Nireekshana, M. A. Goud, R. B. Shankar, and G. N. S. Chandra, “Solar Powered Multipurpose Agriculture Robot,” Int. J. Innov. Sci. Res. Technol., vol. 8, no. 5, p. 299, 2023.
  15. N. Nireekshana, “Reactive Power Compensation in High Power Applications by Bidirectionalcasceded H-Bridge Based Statcom”, Accessed: Oct. 31, 2025. [Online]. Available: https://methodist.edu.in/web/uploads/naac/2019-11-19%2012_45_47pm%20152.pdf
  16. N. Nireekshana, K. P. Reddy, A. Archana, and P. R. Kanth, “Solar-Assisted Smart Driving System for Sustainable Transportation,” Int. J. Innov. Sci. Res. Technol., vol. 10, no. 8, pp. 168–173, 2025.
  17. Namburi Nireekshana, Tanvi H Nerlekar, P. N. Kumar, and M. M. Bajaber, “An Innovative Solar Based Robotic Floor Cleaner,” May 2023, doi: 10.5281/ZENODO.7918621.
  18. Namburi Nireekshana, Onteru Divya, Mohammed Abdul Saquib Adil, Rathod Rahul, and Mohammed Shoaib Mohiuddin, “An Innovative SSSC Device for Power Quality  Enhancement,” Feb. 2024, doi: 10.5281/ZENODO.10670526.
  19. Namburi Nireekshana, K. Pulla Reddy, Reyya Bose Babu, Bonda Sunder, G. Sumanth Kumar, and P. Vivekananda Raj, “Static Var Compensator for Reactive Power Control,” Feb. 2024, doi: 10.5281/ZENODO.10638477.
  20. Namburi Nireekshana, A. Archana, Setla Manvitha, Mohammed Saad Ahmed, Nisar Ahmed Khan, and Akellu George Muller, “Unique Facts Device for Power Quality Mitigation,” Feb. 2024, doi: 10.5281/ZENODO.10652911.
  21. Namburi Nireekshana, Manmarry Vaibhav Murali, Makka Harinath, Ch. Vishal, and Ankam Sandeep Kumar, “Power Quality Improvement by Thyristor Controlled  Series Capacitor,” Feb. 2024, doi: 10.5281/ZENODO.10669448.
  22. B. Jula and N. Nireekshan, “Improving the Voltage Profile at Load End using DVR.,” Grenze Int. J. Eng. Technol. GIJET, vol. 4, no. 3, 2018, Accessed: Nov. 03, 2025. [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=23955287&AN=134178998&h=YQk2OkwoPFcVuqJX%2B1rKA0Mbu%2B3%2FNRInXZhf6Wu1MJR4MoiWNdCgc7k4H5aV7e79V%2BdpemgvHWYJbJToV64CuQ%3D%3D&crl=c
  23. N. Nireekshana, A. Archana, and K. Pullareddy, “A Classical H6 Topology for Modern PV Inverter Design,” in Power Energy and Secure Smart Technologies, CRC Press, 2025, pp. 1–7. Accessed: Nov. 03, 2025. [Online]. Available: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003661917-1/classical-h6-topology-modern-pv-inverter-design-namburi-nireekshana-archana-pullareddy-kanth-rajini
  24. N. Namburi Nireekshana and K. R. Kumar, “A Modern Distribution Power Flow Controller With A PID-Fuzzy Approach: Improves The Power Quality”, Accessed: Nov. 03, 2025. [Online]. Available: https://www.academia.edu/download/112956747/ijeer_120124.pdf
  25. N. Nireekshana, R. Ramachandran, and G. V. Narayana, “An innovative fuzzy logic frequency regulation strategy for two-area power systems,” Int. J. Power Electron. Drive Syst. IJPEDS, vol. 15, no. 1, pp. 603–610, 2024.
  26. N. NIREEKSHANA, R. Ramachandran, and G. V. Narayana, “An intelligent technique for load frequency control in hybrid power system,” 2023, Accessed: Nov. 03, 2025. [Online]. Available: https://www.academia.edu/download/107660997/latest.pdf
  27. N. Nireekshana, R. R. Chandran, and G. V. Narayana, “Frequency Regulation in Two Area System with PSO Driven PID Technique,” J Power Electron Power Syst, vol. 12, no. 2, pp. 8–20, 2022.
  28. R. Jatoth and N. Nireekshana, “Improvement of Power Quality in Grid Connected Non Coventional Energy Sources at Distribution Loads,” Grenze Int J Eng Technol GIJET, vol. 4, no. 3, 2018, Accessed: Nov. 03, 2025. [Online]. Available: https://methodist.edu.in/web/uploads/naac/2019-11-19%2012_58_06pm%20201.pdf
  29. N. Nireekshana, T. H. Nerlekar, P. N. Kumar, and M. M. Bajaber, “An Innovative Solar Based Robotic Floor Cleaner,” Int. J. Innov. Sci. Res. Technol. IJISRT, vol. 8, no. 4, pp. 1880–1885, 2023.
  30. N. Nireekshana, N. Ravi, and K. R. Kumar, “A Modern Distribution Power Flow Controller With A PID-Fuzzy Approach: Improves The Power Quality,” Int. J. Electr. Electron. Res., vol. 12, no. 1, pp. 167–171, 2024.

The power systems industry is experiencing a paradigm shift, driven by rapid technological advancements, decarbonization initiatives, and digital transformation. As nations move toward achieving net-zero emissions, the integration of renewable energy sources such as solar and wind has become vital. The future of power systems is increasingly defined by decentralized generation, artificial intelligence, smart grids, and digital control technologies. This transformation is also enhanced by innovations in energy storage, electric mobility, and automation, which are enabling more flexible and reliable networks. The combination of these developments is leading to a more resilient, efficient, and sustainable global energy ecosystem. The evolution of smart grids and IoT-based monitoring is reshaping system operations, while AI enables predictive maintenance and real-time optimization. Furthermore, energy storage technologies play a crucial role in stabilizing renewable energy generation and ensuring reliability. This paper explores these future trends and highlights the immense opportunities in power systems engineering for innovation, employment, and sustainability. The synergy between renewable integration, energy storage, and intelligent control forms the foundation of the next-generation energy landscape, driving global progress toward clean and inclusive energy for all.

Keywords : Power Systems, Highvoltage DC Transmission Systems, Multi Teminal DC Systems, Voltage Sourcs Converters.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe