Authors :
Everlyne Fradia Akello; Onuh Matthew Ijiga; Idoko Peter Idoko
Volume/Issue :
Volume 11 - 2026, Issue 1 - January
Google Scholar :
https://tinyurl.com/45usmte5
Scribd :
https://tinyurl.com/44wurwmw
DOI :
https://doi.org/10.38124/ijisrt/26jan564
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Early detection of sepsis remains a persistent challenge in acute and critical care due to the heterogeneous,
temporal, and multimodal nature of clinical data preceding disease onset. Traditional rule-based scores and unimodal
predictive models often fail to provide sufficient lead time for effective intervention, as they rely on static thresholds or
limited representations of patient state. This study proposes a multimodal deep learning framework for early sepsis
prediction that jointly models longitudinal clinical time series and unstructured medical text. The architecture integrates
transformer-based temporal encoders for physiological signals and laboratory trends with domain-adapted language models
for clinical narratives, coupled through a cross-modal attention fusion mechanism that supports asynchronous and partially
observed data. The model is evaluated across multiple clinically relevant prediction horizons, with performance assessed
using AUROC, AUPRC, and lead-time gain metrics. Results demonstrate that the multimodal approach consistently
outperforms traditional risk scores, classical machine learning models, and unimodal deep learning baselines, particularly
at longer lead times where early signals are sparse. Ablation and robustness analyses confirm the critical contribution of
clinical text and cross-modal attention to early detection performance and stability under missing or delayed data conditions.
Interpretability analyses further show that model predictions align with established clinical reasoning, highlighting salient
physiological trends and meaningful narrative cues. This work illustrates the potential of multimodal deep learning to enable
proactive sepsis management by delivering earlier, interpretable, and clinically actionable risk assessments. The proposed
framework provides a foundation for next-generation clinical decision support systems that move beyond reactive detection
toward anticipatory care.
Keywords :
Early Sepsis Prediction; Multimodal Deep Learning; Clinical Time Series; Clinical Natural Language Processing; Transformer Models.
References :
- Alsentzer, E., Murphy, J. R., Boag, W., Weng, W.-H., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. Proceedings of the 2nd Clinical Natural Language Processing Workshop, 72–78. https://doi.org/10.18653/v1/W19-1909
- Ayoola, V. B., Idoko, I. P., Eromonsei, S. O., Afolabi, O., Apampa, A. R., & Oyebanji, O. S. (2024). The role of big data and AI in enhancing biodiversity conservation and resource management in the USA. World Journal of Advanced Research and Reviews, 23(2), 1851–1873.
- Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
- Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. https://doi.org/10.1109/TPAMI.2018.2798607
- Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391
- Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., & Buchanan, B. G. (2001). A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics, 34(5), 301–310. https://doi.org/10.1006/jbin.2001.1029
- Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural networks for multivariate time series with missing values. Scientific Reports, 8, 6085. https://doi.org/10.1038/s41598-018-24271-9
- Darko, D., Kwekutsu, E., & Idoko, I. P. (2025). Synergistic Effects of Phytochemicals in Combating Chronic Diseases with Insights into Molecular Mechanisms and Nutraceutical Development.
- Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y., Shieh, L., … Das, R. (2016). Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Medical Informatics, 4(3), e28. https://doi.org/10.2196/medinform.5909
- Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C., & Onwusi, C. N. (2025). Geochemical and mineralogical characteristics of deep porphyry systems: Implications for exploration using ASTER. International Journal of Scientific Research in Civil Engineering, 9(1), 01–21.
- Futoma, J., Hariharan, S., & Heller, K. (2017). Learning to detect sepsis with a multitask Gaussian process RNN classifier. Proceedings of the 34th International Conference on Machine Learning, 1174–1182.
- Gaye, A., Victor Bamigwojo, O., Idoko, I. P., & Fatai Adeoye, A. (2025). Modeling Hepatitis B Virus Transmission Dynamics Using Atangana Fractional Order Network Approach: A Review of Mathematical and Epidemiological Perspectives. International Journal of Innovative Science and Research Technology, 10(4), 41–51.
- Harutyunyan, H., Khachatrian, H., Kale, D. C., Steeg, G. V., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific Data, 6, 96. https://doi.org/10.1038/s41597-019-0103-9
- Henry, K. E., Hager, D. N., Pronovost, P. J., & Saria, S. (2015). A targeted real-time early warning score (TREWScore) for septic shock. Science Translational Medicine, 7(299), 299ra122. https://doi.org/10.1126/scitranslmed.aab3719
- Idogho, C., Abah, E. O., Onuhc, J. O., Harsito, C., Omenkaf, K., Samuel, A., … Ali, U. E. (2025). Machine Learning‐Based Solar Photovoltaic Power Forecasting for Nigerian Regions. Energy Science & Engineering, 13(4), 1922–1934.
- Idoko, I. P., Akindele, J. S., Imarenakhue, W. U., & Bashiru, O. (2024). Exploring the Role of Bioenergy in Achieving Sustainable Waste Utilization and Promoting Low-Carbon Transition Strategies. International Journal of Scientific Research in Science and Technology. ISSN 2395-6011.
- Idoko, I. P., Arthur, C., Ijiga, O. M., Osakwe, A., Enyejo, L. A., & Otakwu, A. (2024). Incorporating Radioactive Decay Batteries into the USA's Energy Grid: Solutions for Winter Power Challenges. International Journal, 3(9).
- Idoko, I. P., David-Olusa, A., Badu, S. G., Okereke, E. K., Agaba, J. A., & Bashiru, O. (2024). The dual impact of AI and renewable energy in enhancing medicine for better diagnostics, drug discovery, and public health. Magna Scientia Advanced Biology and Pharmacy, 12(2), 99–127.
- Idoko, I. P., Eniodunmo, O., Danso, M. O., Bashiru, O., Ijiga, O. M., & Manuel, H. N. N. (2024). Evaluating benchmark cheating and the superiority of MAMBA over transformers in Bayesian neural networks: An in-depth analysis of AI performance. World Journal of Advanced Engineering Technology and Sciences, 12(1), 372–389.
- Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. World Journal of Advanced Engineering Technology and Sciences, 11(1), 274–293.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. Global Journal of Engineering and Technology Advances, 19(01), 006–036.
- Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA. World Journal of Advanced Research and Reviews, 21(1), 888–913.
- Idoko, I. P., Ayodele, T. R., Abolarin, S. M., & Ewim, D. R. E. (2023). Maximizing the cost effectiveness of electric power generation through the integration of distributed generators: wind, hydro and solar power. Bulletin of the National Research Centre, 47(1), 166.
- Ijiga, A. C., Abutu, E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 11(01), 535–551.
- Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Ukatu, I. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 7(01), 048–063.
- Ijiga, O. M., Idoko, I. P., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression. World Journal of Advanced Engineering Technology and Sciences, 11, 372–394.
- Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Journal of Science and Technology, 11, 001–024.
- Ikedionu, C. A., Idoko, I. P., Omale, J. O., & Idogho, C. (2025). Mathematical modeling of 3D printing of microreactors for continuous flow chemical processes. International Journal of Research Publication and Reviews.
- Kumar, A., Roberts, D., Wood, K. E., Light, B., Parrillo, J. E., Sharma, S., … Cheang, M. (2006). Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine, 34(6), 1589–1596. https://doi.org/10.1097/01.CCM.0000217961.75225.E9
- Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682
- Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.
- Manuel, H. N. N., Adeoye, T. O., Idoko, I. P., Akpa, F. A., Ijiga, O. M., & Igbede, M. A. (2024). Optimizing passive solar design in Texas green buildings by integrating sustainable architectural features for maximum energy efficiency. Magna Scientia Advanced Research and Reviews, 11(01), 235–261.
- Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep Patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094. https://doi.org/10.1038/srep26094
- Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. Proceedings of the 28th International Conference on Machine Learning, 689–696.
- Okika, N., Nwatuzie, G. A., Odozor, L., Oni, O., & Idoko, I. P. (2025). Addressing iot-driven cybersecurity risks in critical infrastructure to safeguard public utilities and prevent large-scale service disruptions. International Journal of Innovative Science and Research Technology, 10(2).
- Pakhomov, S. V. S., Finley, G., McEwan, R., Wang, Y., & Melton, G. B. (2010). Corpus domain effects on distributional semantic modeling of medical terms. Bioinformatics, 26(24), 2991–2998. https://doi.org/10.1093/bioinformatics/btq567
- Raghu, A., Komorowski, M., Celi, L. A., Szolovits, P., & Ghassemi, M. (2017). Continuous state-space models for optimal sepsis treatment: A deep reinforcement learning approach. Machine Learning for Healthcare Conference Proceedings, 77, 147–163.
- Raith, E. P., Udy, A. A., Bailey, M., McGloughlin, S., MacIsaac, C., Bellomo, R., & Pilcher, D. V. (2017). Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA, 317(3), 290–300. https://doi.org/10.1001/jama.2016.20328
- Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., … Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1, 18. https://doi.org/10.1038/s41746-018-0029-1
- Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., … Naghavi, M. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. The Lancet, 395(10219), 200–211. https://doi.org/10.1016/S0140-6736(19)32989-7
- Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C., & Chute, C. G. (2010). Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications. Journal of the American Medical Informatics Association, 17(5), 507–513. https://doi.org/10.1136/jamia.2009.001560
- Seymour, C. W., Liu, V. X., Iwashyna, T. J., Brunkhorst, F. M., Rea, T. D., Scherag, A., … Angus, D. C. (2016). Assessment of clinical criteria for sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 762–774. https://doi.org/10.1001/jama.2016.0288
- Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
- Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., … Angus, D. C. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287
- Ugbane, S. I., Umeaku, C., Idoko, I. P., Enyejo, L. A., Michael, C. I., & Efe, F. (2024). Optimization of quadcopter propeller aerodynamics using blade element and vortex theory. International Journal of Innovative Science and Research Technology, 9(10), 1–12.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Early detection of sepsis remains a persistent challenge in acute and critical care due to the heterogeneous,
temporal, and multimodal nature of clinical data preceding disease onset. Traditional rule-based scores and unimodal
predictive models often fail to provide sufficient lead time for effective intervention, as they rely on static thresholds or
limited representations of patient state. This study proposes a multimodal deep learning framework for early sepsis
prediction that jointly models longitudinal clinical time series and unstructured medical text. The architecture integrates
transformer-based temporal encoders for physiological signals and laboratory trends with domain-adapted language models
for clinical narratives, coupled through a cross-modal attention fusion mechanism that supports asynchronous and partially
observed data. The model is evaluated across multiple clinically relevant prediction horizons, with performance assessed
using AUROC, AUPRC, and lead-time gain metrics. Results demonstrate that the multimodal approach consistently
outperforms traditional risk scores, classical machine learning models, and unimodal deep learning baselines, particularly
at longer lead times where early signals are sparse. Ablation and robustness analyses confirm the critical contribution of
clinical text and cross-modal attention to early detection performance and stability under missing or delayed data conditions.
Interpretability analyses further show that model predictions align with established clinical reasoning, highlighting salient
physiological trends and meaningful narrative cues. This work illustrates the potential of multimodal deep learning to enable
proactive sepsis management by delivering earlier, interpretable, and clinically actionable risk assessments. The proposed
framework provides a foundation for next-generation clinical decision support systems that move beyond reactive detection
toward anticipatory care.
Keywords :
Early Sepsis Prediction; Multimodal Deep Learning; Clinical Time Series; Clinical Natural Language Processing; Transformer Models.