Performance and Durability of a Gravity Charcoal Filter for Organic Pollution


Authors : Bavon Ndala Mbavu; Zeka Mujinga

Volume/Issue : Volume 10 - 2025, Issue 10 - October


Google Scholar : https://tinyurl.com/3h5yjp7e

Scribd : https://tinyurl.com/yd5e8ja3

DOI : https://doi.org/10.38124/ijisrt/25oct1442

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Confronting the health emergency posed by the organic pollution of Lake Kabongo for the city of Kolwezi, this study proposes a frugal and circular innovation: a gravity filter designed on the principle of resource economy and the use of local materials. The objective is threefold: performance, optimization, and durability to address the polluting load (TOC and COD > 12 mg/L) affecting a population of over 600,000 people. The filter, structured around accessible media (gravel, sand, artisanal activated carbon from coconut shells and lemon juice), was subjected to a rigorous experimental design testing six different layer assemblies. The data reveal optimal performance for a three-layer architecture (5/50/35 cm), achieving a reduction of approximately 52% in COD and TOC parameters. Turbidity decreased from 20.8 to 6.6 NTU, bringing it closer to the WHO standard, without significant pH fluctuation. Beyond efficiency, a multicriteria analysis (Pivot Table and Radar Chart) demonstrated that this configuration offers the best balance between purification efficiency and resilience, minimizing clogging risks. More than just a treatment process, this filter embodies a socio- technical solution rooted in its local context, offering a sustainable, economical, and ecological alternative for securing access to safe water.

Keywords : Artisanal Activated Carbon, Gravity Filtration, Organic Pollution, Optimization, Drinking Water, Lake Kabongo.

References :

  1. Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption. CRC Press.
  2. Huisman, L., & Wood, W. E. (1974). Slow sand filtration. World Health Organization.
  3. Rodier, J., Legube, B., Merlet, N., & Brunet, R. (2009). L'analyse de l'eau (9e éd.). Dunod.
  4. APHA (American Public Health Association). (2017). Standard methods for the examination of water and wastewater (23e éd.).
  5. Banque Mondiale. (2018). Rapport sur le développement dans le monde 2018 : Apprendre pour réaliser la promesse de l'éducation. Banque Mondiale.
  6. Kabasele, J. (2020). Optimisation d'un filtre à sable pour le traitement des eaux de surface en milieu rural congolais [Mémoire de master, Université de Kinshasa].
  7. Kalonji, F. (2023). Conception et évaluation d'un filtre domestique gravitaire pour la potabilisation de l'eau à Mbuji-Mayi [Thèse de doctorat, Université de Lubumbashi].
  8. Kapend, D. (2020). Étude de la pollution des eaux du lac Kabongo et essais de traitement par coagulation-filtration [Mémoire de fin d'études, ISTA/Kolwezi].
  9. Kashala, J. (2021). Valorisation des coques d'arachide pour la production de charbon activé et application dans le traitement de l'eau [Mémoire de master, Université de Kolwezi].
  10. Mbuyi, P. (2019). Évaluation de la qualité physico-chimique des eaux du lac Kabongo et risques sanitaires associés [Thèse de doctorat, Université de Kinshasa].
  11. Mulumba, A. (2019). Sources de pollution et dynamique des polluants dans les lacs urbains de la région du Katanga [Mémoire de master, Université de Lubumbashi].
  12. Mutetwa, T. (2020). Development of low-cost water quality monitoring techniques for rural communities [Thèse de doctorat, University of Zimbabwe].
  13. Mwepu, L. (2021). Fabrication et caractérisation d'un charbon activé à base de biomasse locale pour l'adsorption des métaux lourds [Mémoire de fin d'études, ISTA/Kolwezi].
  14. Nkulu, C. (2022). Stratégies de gestion durable des ressources en eau en contexte de stress hydrique en RDC [Thèse de doctorat, Université de Liège].
  15. Yumba, R. (2022). Caractérisation granulométrique des sables de la rivière Dilala et leur potentiel pour la filtration lente [Mémoire de fin d'études, ISTA/Kolwezi].
  16. Adedayo, M. R. (2022). Optimization of filter media configuration in household water treatment systems. Journal of Water and Health, 20(4), 645-658.
  17. Ahmed, M. J. (2020). Regeneration of activated carbon: A review. Journal of Environmental Chemical Engineering, 8(5), 104429.
  18. Chen, X., Li, F., & Wang, Y. (2020). Synergistic effects of sand and activated carbon in dual-media filters for organic matter removal. Water Research, 184, 116189.
  19. Diallo, A. (2021). Clogging mechanisms in household sand filters used for drinking water treatment in West Africa. Water Science and Technology, 83(6), 1321-1333.
  20. Garcia, M. E. (2018). The role of pre-filtration in protecting advanced adsorption media in point-of-use water treatment. Environmental Technology & Innovation, 11, 23-31.
  21. Liu, H., Zhang, Z., & Yang, H. (2019). Saturation kinetics and breakthrough behavior of granular activated carbon in fixed-bed filters. Chemical Engineering Journal, 359, 762-771.
  22. Matthys, S. (2021). COD and TOC as complementary parameters for assessing organic pollution in surface waters. Environmental Monitoring and Assessment, 193(2), 1-15.
  23. Oliveira, C. (2022). Balancing mechanical and adsorptive filtration in multi-layer household water filters: A performance trade-off. Journal of Environmental Management, 324, 116362.
  24. Sawadogo, B. (2019). Performance evaluation of locally made gravity-fed water filters in Burkina Faso. Journal of Water, Sanitation and Hygiene for Development, 9(3), 456-467.
  25. Zhang, W. (2023). Application of radar charts for multi-criteria decision analysis in environmental engineering projects. Environmental Modelling & Software, 159, 105567.
  26. Mukengeshayi, K., et al. (2020). État des ressources en eau en République Démocratique du Congo et enjeux de gestion. IRD Éditions.
  27. Nations Unies. (2015). Résolution adoptée par l'Assemblée générale le 25 septembre 2015 : Transformer notre monde : le Programme de développement durable à l'horizon 2030 (A/RES/70/1).
  28. OMS (Organisation Mondiale de la Santé). (2017). Directives de qualité pour l'eau de boisson (4e éd.).
  29. Tshibangu, D., Kanda, M., & Mbayo, C. (2023). Activation of coconut shell charcoal with citric acid for water purification: A sustainable approach. Journal of Cleaner Production, 382, 135234.
  30. UNICEF & OMS. (2021). *Progrès en matière d'eau, d'assainissement et d'hygiène dans les ménages 2000-2020 : Cinq années après le début des ODD*. OMS/UNICEF.

Confronting the health emergency posed by the organic pollution of Lake Kabongo for the city of Kolwezi, this study proposes a frugal and circular innovation: a gravity filter designed on the principle of resource economy and the use of local materials. The objective is threefold: performance, optimization, and durability to address the polluting load (TOC and COD > 12 mg/L) affecting a population of over 600,000 people. The filter, structured around accessible media (gravel, sand, artisanal activated carbon from coconut shells and lemon juice), was subjected to a rigorous experimental design testing six different layer assemblies. The data reveal optimal performance for a three-layer architecture (5/50/35 cm), achieving a reduction of approximately 52% in COD and TOC parameters. Turbidity decreased from 20.8 to 6.6 NTU, bringing it closer to the WHO standard, without significant pH fluctuation. Beyond efficiency, a multicriteria analysis (Pivot Table and Radar Chart) demonstrated that this configuration offers the best balance between purification efficiency and resilience, minimizing clogging risks. More than just a treatment process, this filter embodies a socio- technical solution rooted in its local context, offering a sustainable, economical, and ecological alternative for securing access to safe water.

Keywords : Artisanal Activated Carbon, Gravity Filtration, Organic Pollution, Optimization, Drinking Water, Lake Kabongo.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe