Radiomics in Oncology: A Non-Invasive Tool for Predicting Tumor Aggressiveness and Guiding Personalized Therapy


Authors : Manjima Sunil; Hamlin Joseph Antony; Gowtham Rajkumar

Volume/Issue : Volume 10 - 2025, Issue 11 - November


Google Scholar : https://tinyurl.com/hxpezkm5

Scribd : https://tinyurl.com/n9bn8rdd

DOI : https://doi.org/10.38124/ijisrt/25nov515

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high- dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By converting standard medical images into mineable data, radiomics bridges the gap between imaging science and personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis, and clinical outcomes[3]. Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for methodological standardization and reproducibility in image processing, feature extraction, and model validation[15]. Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have been instrumental in improving cross-platform and cross-center reliability[16]. Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus represents a crucial step toward realizing the promise of data-driven, personalized medicine.

Keywords : Radiomics; Medical Imaging; Machine Learning; Deep Learning; Precision Oncology; Feature Extraction; Data Harmonization; Model Interpretability; Radiogenomics; Personalized Medicine.

References :

  1. Aerts HJW, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nat Commun.* 2014;5:4006. doi:10.1038/ncomms5006
  2. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. *Phys Med Biol.* 2017;62(15):R151. doi:10.1088/1361-6560/aa7c55
  3. Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O. Machine and deep learning methods for radiomics. *Med Phys.* 2020;47(5):e185–e202. doi:10.1002/mp.13678
  4. Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in precision medicine. *Nat Rev Clin Oncol.* 2022;19(2):132–146. doi:10.1038/s41571-021-00549-4
  5. Caruso D, Polici M, Zerunian M, et al. Radiomics in oncology, part 1: Technical principles and gastrointestinal application in CT and MRI. *Cancers (Basel).* 2021;13(11):2522. doi:10.3390/cancers13112522
  6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. *Radiology.* 2016;278(2):563–577. doi:10.1148/radiol.2015151169
  7. Haghshomar M, et al. Pitfalls and technical limitations of AI and radiomics in liver oncology imaging. *Front Oncol.* 2024. doi:10.3389/fonc.2024.1362737
  8. Huang H, Han L, Guo J, et al. Multiphase and multiparameter MRI-based radiomics for prediction of tumor response to neoadjuvant therapy in locally advanced rectal cancer. *Radiat Oncol.* 2023;18:179. doi:10.1186/s13014-023-02368-4
  9. Huynh E, Coroller TP, Narayan V, et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. *Radiother Oncol.* 2016;120(2):258–266. doi:10.1016/j.radonc.2016.05.006
  10. Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: Current challenges, future prospects and the proposal of a new framework. *Methods.* 2021;188:20–29. doi:10.1016/j.ymeth.2020.07.014
  11. Jaffray DA, Nuzzo J. Artificial intelligence-driven radiomics study in cancer: The role of feature engineering and modelling. *Mil Med Res.* 2023;10:22. doi:10.1186/s40779-023-00458-8
  12. Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. *Radiology.* 2016;280(3):880–889. doi:10.1148/radiol.2016160845
  13. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge between medical imaging and personalized medicine. *Nat Rev Clin Oncol.* 2017;14(12):749–762. doi:10.1038/nrclinonc.2017.141
  14. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. *Eur J Cancer.* 2012;48(4):441–446. doi:10.1016/j.ejca.2011.11.036
  15. Leijenaar RTH, Carvalho S, Hoebers FJP, Aerts HJW, Dekker A. A multicenter study of radiomic features for outcome prediction in head and neck cancer. *Radiother Oncol.* 2015;114(3):328–336. doi:10.1016/j.radonc.2015.02.013
  16. Orlhac F, Eertink JJ, Cottereau AS, et al. A guide to ComBat harmonization of radiomic features in multicenter studies. *Radiol Artif Intell.* 2018;1(1):e190003. doi:10.1148/ryai.2019180003
  17. Park JE, Kim HS, Kim N, et al. Prediction of pseudoprogression in patients with glioblastoma using radiomic features of diffusion and perfusion MRI. *Sci Rep.* 2021;11:8522. doi:10.1038/s41598-021-87921-7
  18. Park JE, Kim D, Kim HS, et al. Quality of science and reporting of radiomics in oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. *Eur Radiol.* 2020;30:523–536. doi:10.1007/s00330-019-06380-z
  19. Rizzo S, Botta F, Raimondi S, et al. Radiomics: The facts and the challenges of image analysis. *Eur Radiol Exp.* 2018;2:36. doi:10.1186/s41747-018-0068-z
  20. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: A systematic review. *Int J Radiat Oncol Biol Phys.* 2018;102(4):1143–1158. doi:10.1016/j.ijrobp.2018.05.053
  21. Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature development: The need for safeguards. *Radiother Oncol.* 2019;130:2–9. doi:10.1016/j.radonc.2018.10.027
  22. Wu J, Aguilera T, Shultz D, et al. Early-stage non-small cell lung cancer: Quantitative imaging characteristics of 18F-fluorodeoxyglucose PET/CT allow prediction of distant metastasis. *Radiology.* 2016;281(1):270–278. doi:10.1148/radiol.2016152174
  23. Zamboglou C, Carles M, Fechter T, et al. Radiomic features from PSMA PET/MRI for non-invasive intraprostatic tumor discrimination and characterization in patients with prostate cancer. *Front Oncol.* 2019;9:858. doi:10.3389/fonc.2019.00858
  24. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardisation Initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. *Radiology.* 2020;295(2):328–338. doi:10.1148/radiol.2020191145

Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high- dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By converting standard medical images into mineable data, radiomics bridges the gap between imaging science and personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis, and clinical outcomes[3]. Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for methodological standardization and reproducibility in image processing, feature extraction, and model validation[15]. Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have been instrumental in improving cross-platform and cross-center reliability[16]. Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus represents a crucial step toward realizing the promise of data-driven, personalized medicine.

Keywords : Radiomics; Medical Imaging; Machine Learning; Deep Learning; Precision Oncology; Feature Extraction; Data Harmonization; Model Interpretability; Radiogenomics; Personalized Medicine.

CALL FOR PAPERS


Paper Submission Last Date
30 - November - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe