Authors :
Manjima Sunil; Hamlin Joseph Antony; Gowtham Rajkumar
Volume/Issue :
Volume 10 - 2025, Issue 11 - November
Google Scholar :
https://tinyurl.com/hxpezkm5
Scribd :
https://tinyurl.com/n9bn8rdd
DOI :
https://doi.org/10.38124/ijisrt/25nov515
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high-
dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By
converting standard medical images into mineable data, radiomics bridges the gap between imaging science and
personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing
for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis,
and clinical outcomes[3].
Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including
lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for
methodological standardization and reproducibility in image processing, feature extraction, and model validation[15].
Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model
interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have
been instrumental in improving cross-platform and cross-center reliability[16].
Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is
expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus
represents a crucial step toward realizing the promise of data-driven, personalized medicine.
Keywords :
Radiomics; Medical Imaging; Machine Learning; Deep Learning; Precision Oncology; Feature Extraction; Data Harmonization; Model Interpretability; Radiogenomics; Personalized Medicine.
References :
- Aerts HJW, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nat Commun.* 2014;5:4006. doi:10.1038/ncomms5006
- Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. *Phys Med Biol.* 2017;62(15):R151. doi:10.1088/1361-6560/aa7c55
- Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O. Machine and deep learning methods for radiomics. *Med Phys.* 2020;47(5):e185–e202. doi:10.1002/mp.13678
- Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in precision medicine. *Nat Rev Clin Oncol.* 2022;19(2):132–146. doi:10.1038/s41571-021-00549-4
- Caruso D, Polici M, Zerunian M, et al. Radiomics in oncology, part 1: Technical principles and gastrointestinal application in CT and MRI. *Cancers (Basel).* 2021;13(11):2522. doi:10.3390/cancers13112522
- Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. *Radiology.* 2016;278(2):563–577. doi:10.1148/radiol.2015151169
- Haghshomar M, et al. Pitfalls and technical limitations of AI and radiomics in liver oncology imaging. *Front Oncol.* 2024. doi:10.3389/fonc.2024.1362737
- Huang H, Han L, Guo J, et al. Multiphase and multiparameter MRI-based radiomics for prediction of tumor response to neoadjuvant therapy in locally advanced rectal cancer. *Radiat Oncol.* 2023;18:179. doi:10.1186/s13014-023-02368-4
- Huynh E, Coroller TP, Narayan V, et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. *Radiother Oncol.* 2016;120(2):258–266. doi:10.1016/j.radonc.2016.05.006
- Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: Current challenges, future prospects and the proposal of a new framework. *Methods.* 2021;188:20–29. doi:10.1016/j.ymeth.2020.07.014
- Jaffray DA, Nuzzo J. Artificial intelligence-driven radiomics study in cancer: The role of feature engineering and modelling. *Mil Med Res.* 2023;10:22. doi:10.1186/s40779-023-00458-8
- Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. *Radiology.* 2016;280(3):880–889. doi:10.1148/radiol.2016160845
- Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge between medical imaging and personalized medicine. *Nat Rev Clin Oncol.* 2017;14(12):749–762. doi:10.1038/nrclinonc.2017.141
- Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. *Eur J Cancer.* 2012;48(4):441–446. doi:10.1016/j.ejca.2011.11.036
- Leijenaar RTH, Carvalho S, Hoebers FJP, Aerts HJW, Dekker A. A multicenter study of radiomic features for outcome prediction in head and neck cancer. *Radiother Oncol.* 2015;114(3):328–336. doi:10.1016/j.radonc.2015.02.013
- Orlhac F, Eertink JJ, Cottereau AS, et al. A guide to ComBat harmonization of radiomic features in multicenter studies. *Radiol Artif Intell.* 2018;1(1):e190003. doi:10.1148/ryai.2019180003
- Park JE, Kim HS, Kim N, et al. Prediction of pseudoprogression in patients with glioblastoma using radiomic features of diffusion and perfusion MRI. *Sci Rep.* 2021;11:8522. doi:10.1038/s41598-021-87921-7
- Park JE, Kim D, Kim HS, et al. Quality of science and reporting of radiomics in oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. *Eur Radiol.* 2020;30:523–536. doi:10.1007/s00330-019-06380-z
- Rizzo S, Botta F, Raimondi S, et al. Radiomics: The facts and the challenges of image analysis. *Eur Radiol Exp.* 2018;2:36. doi:10.1186/s41747-018-0068-z
- Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: A systematic review. *Int J Radiat Oncol Biol Phys.* 2018;102(4):1143–1158. doi:10.1016/j.ijrobp.2018.05.053
- Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature development: The need for safeguards. *Radiother Oncol.* 2019;130:2–9. doi:10.1016/j.radonc.2018.10.027
- Wu J, Aguilera T, Shultz D, et al. Early-stage non-small cell lung cancer: Quantitative imaging characteristics of 18F-fluorodeoxyglucose PET/CT allow prediction of distant metastasis. *Radiology.* 2016;281(1):270–278. doi:10.1148/radiol.2016152174
- Zamboglou C, Carles M, Fechter T, et al. Radiomic features from PSMA PET/MRI for non-invasive intraprostatic tumor discrimination and characterization in patients with prostate cancer. *Front Oncol.* 2019;9:858. doi:10.3389/fonc.2019.00858
- Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardisation Initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. *Radiology.* 2020;295(2):328–338. doi:10.1148/radiol.2020191145
Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high-
dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By
converting standard medical images into mineable data, radiomics bridges the gap between imaging science and
personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing
for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis,
and clinical outcomes[3].
Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including
lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for
methodological standardization and reproducibility in image processing, feature extraction, and model validation[15].
Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model
interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have
been instrumental in improving cross-platform and cross-center reliability[16].
Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is
expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus
represents a crucial step toward realizing the promise of data-driven, personalized medicine.
Keywords :
Radiomics; Medical Imaging; Machine Learning; Deep Learning; Precision Oncology; Feature Extraction; Data Harmonization; Model Interpretability; Radiogenomics; Personalized Medicine.