Smut Fungi: A Comprehensive Review


Authors : Sudhir Diwase; Arvind Dhabe; Balasaheb Ughade; Ashwini Biradar; Tejswini Sontakke; Dinesh Nalage

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/2nbmpet9

Scribd : https://tinyurl.com/ys9c4kyw

DOI : https://doi.org/10.5281/zenodo.14608940

Abstract : Smut fungi (Ustilaginales), obligate plant pathogens within the Basidiomycota phylum, play critical roles in ecology and agriculture. Known for their host specificity and production of black powdery teliospores, these fungi predominantly infect monocots, including economically vital crops like wheat, rice, maize, and sugarcane. Their global distribution and adaptability to diverse climates make them significant contributors to agricultural losses, impacting food security and trade. Traditional methods for identifying smut fungi, such as morphological and cultural analyses, are now complemented by molecular techniques like DNA barcoding, PCR, and next-generation sequencing (NGS). These advancements have refined fungal taxonomy, uncovered cryptic species, and elucidated evolutionary relationships, enhancing the accuracy of identification and ecological understanding. India, a biodiversity hotspot, reports 159 species of smut fungi, primarily targeting the Poaceae family. Despite advancements, gaps remain in understanding their biodiversity, pathogenic mechanisms, and responses to climate change. Addressing these challenges necessitates interdisciplinary research, integrating modern molecular tools with traditional approaches. This review underscores the importance of smut fungi research for developing sustainable disease management strategies. By fostering global collaboration and leveraging advanced techniques, researchers can mitigate the agricultural impact of smut fungi while exploring their ecological and biotechnological potential. Comprehensive studies are crucial for ensuring agricultural sustainability, biodiversity conservation, and enhanced food security in the face of emerging global challenges.

Keywords : Smut Fungi, Fungal Taxonomy, Plant Pathogens, Molecular Identification, Agricultural Sustainability.

References :

  1. Afifah, L., & Saputro, N. W. (2020). Growth and viability of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin in different alternative media. IOP Conference Series: Earth and Environmental Science, 468(1), 012037. https://doi.org/10.1088/1755-1315/468/1/012037
  2. Ahrendt, S. R., Quandt, C. A., Ciobanu, D., Clum, A., Salamov, A., Andreopoulos, B., Cheng, J.-F., Woyke, T., Pelin, A., Henrissat, B., Reynolds, N. K., Benny, G. L., Smith, M. E., James, T. Y., & Grigoriev, I. V. (2018). Leveraging single-cell genomics to expand the fungal tree of life. Nature Microbiology, 3(12), 1417–1428. https://doi.org/10.1038/s41564-018-0261-0
  3. Araujo, R., & Sampaio-Maia, B. (2018). Fungal Genomes and Genotyping. In Advances in Applied Microbiology (Vol. 102, pp. 37–81). Elsevier. https://doi.org/10.1016/bs.aambs.2017.10.003
  4. Balajee, S. A., Borman, A. M., Brandt, M. E., Cano, J., Cuenca-Estrella, M., Dannaoui, E., Guarro, J., Haase, G., Kibbler, C. C., Meyer, W., O’Donnell, K., Petti, C. A., Rodriguez-Tudela, J. L., Sutton, D., Velegraki, A., & Wickes, B. L. (2009). Sequence-Based Identification of Aspergillus, Fusarium , and Mucorales Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here? Journal of Clinical Microbiology, 47(4), 877–884. https://doi.org/10.1128/JCM.01685-08
  5. Bishnoi, S. K., He, X., Phuke, R. M., Kashyap, P. L., Alakonya, A., Chhokar, V., Singh, R. P., & Singh, P. K. (2020). Karnal Bunt: A Re-Emerging Old Foe of Wheat. Frontiers in Plant Science, 11(September), 1–18. https://doi.org/10.3389/fpls.2020.569057
  6. Castelle, C. J., & Banfield, J. F. (2018). Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell, 172(6), 1181–1197. https://doi.org/10.1016/j.cell.2018.02.016
  7. Eberhardt, U. (2012). Methods for DNA Barcoding of Fungi. In W. J. Kress & D. L. Erickson (Eds.), DNA Barcodes (Vol. 858, pp. 183–205). Humana Press. https://doi.org/10.1007/978-1-61779-591-6_9
  8. Erlich, H. A., Gelfand, D., & Sninsky, J. J. (1991). Recent Advances in the Polymerase Chain Reaction. Science, 252(5013), 1643–1651. https://doi.org/10.1126/science.2047872
  9. Fischer, G., & Dott, W. (2002). Quality assurance and good laboratory practice in the mycological laboratory – compilation of basic techniques for the identification of fungi. International Journal of Hygiene and Environmental Health, 205(6), 433–442. https://doi.org/10.1078/1438-4639-00190
  10. Fischer, G. W., & Hirschhorn, E. (2018). A Critical Study of Some Species of Ustilago Causing Stem Smut on Various Grasses. Mycologia, 37(2), 236–266. https://doi.org/10.1080/00275514.1945.12023984
  11. Fitzpatrick, D. A., Logue, M. E., Stajich, J. E., & Butler, G. (2006). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology, 6(1), 99. https://doi.org/10.1186/1471-2148-6-99
  12. García‐Guzmán, G., & Burdon, J. J. (1997). Impact of the flower smut Ustilago cynodontis (Ustilaginaceae) on the performance of the clonal grass Cynodon dactylon (Gramineae). American Journal of Botany, 84(11), 1565–1571. https://doi.org/10.2307/2446618
  13. Gautam, A. K., Verma, R. K., Avasthi, S., Sushma, S., Devadatha, B., Thakur, S., Kashyap, P. L., Prasher, I. B., Bhadauria, R., Niranjan, M., & Ranadive, K. R. (2021). Smut fungi: A compendium of their diversity and distribution in India. MycoAsia. https://doi.org/10.59265/mycoasia.2021-01
  14. Haddrill, P. R. (2021). Developments in forensic DNA analysis. Emerging Topics in Life Sciences, 5(3), 381–393. https://doi.org/10.1042/ETLS20200304
  15. Hasnain, H., & Mehvish, N. (2020). Assessment of plant genetic variations using molecular markers: A review. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2020.80514
  16. Hosoya, K., Nakayama, M., Matsuzawa, T., Imanishi, Y., Hitomi, J., & Yaguchi, T. (2012). Risk analysis and development of a rapid method for identifying four species of Byssochlamys. Food Control, 26(1), 169–173. https://doi.org/10.1016/j.foodcont.2012.01.024
  17. Hu, Y., Irinyi, L., Hoang, M. T. V., Eenjes, T., Graetz, A., Stone, E. A., Meyer, W., Schwessinger, B., & Rathjen, J. P. (2022). Inferring Species Compositions of Complex Fungal Communities from Long- and Short-Read Sequence Data. mBio, 13(2), e02444-21. https://doi.org/10.1128/mbio.02444-21
  18. Humber, R. A. (2012). Preservation of entomopathogenic fungal cultures. In Manual of Techniques in Invertebrate Pathology (pp. 317–328). Elsevier. https://doi.org/10.1016/B978-0-12-386899-2.00010-5
  19. James, T. Y., Stajich, J. E., Hittinger, C. T., & Rokas, A. (2020). Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology, 74(1), 291–313. https://doi.org/10.1146/annurev-micro-022020-051835
  20. Jaswal, R., Rajarammohan, S., Dubey, H., & Sharma, T. R. (2020). Smut fungi as a stratagem to characterize rust effectors: Opportunities and challenges. World Journal of Microbiology and Biotechnology, 36(10), 150. https://doi.org/10.1007/s11274-020-02927-x
  21. Kartavtsev, Y. P. (2021). Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals, 11(5), 1473. https://doi.org/10.3390/ani11051473
  22. Kasper, C., Ribeiro, D., Almeida, A. M. D., Larzul, C., Liaubet, L., & Murani, E. (2020). Omics Application in Animal Science—A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes, 11(8), 920. https://doi.org/10.3390/genes11080920
  23. Kumawat, G., Kanta Kumawat, C., Chandra, K., Pandey, S., Chand, S., Nandan Mishra, U., Lenka, D., & Sharma, R. (2021). Insights into Marker Assisted Selection and Its Applications in Plant Breeding. In I. Y. Abdurakhmonov (Ed.), Plant Breeding—Current and Future Views. IntechOpen. https://doi.org/10.5772/intechopen.95004
  24. Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11(1), 14. https://doi.org/10.1186/s43008-020-00033-z
  25. Mapuranga, J., Zhang, N., Zhang, L., Chang, J., & Yang, W. (2022). Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Frontiers in Microbiology, 13, 799396. https://doi.org/10.3389/fmicb.2022.799396
  26. McCarthy, C. G. P., & Fitzpatrick, D. A. (2017). Multiple Approaches to Phylogenomic Reconstruction of the Fungal Kingdom. In Advances in Genetics (Vol. 100, pp. 211–266). Elsevier. https://doi.org/10.1016/bs.adgen.2017.09.006
  27. Mendoza-martínez, A. E., Cano-domínguez, N., & Aguirre, J. (2020). Yap1 homologs mediate more than the redox regulation of the antioxidant response in fi lamentous fungi. Fungal Biology, 124(5), 253–262. https://doi.org/10.1016/j.funbio.2019.04.001
  28. Mikryukov, V., Dulya, O., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., Delgado-Baquerizo, M., Maestre, F. T., Nilsson, H., Pärn, J., Öpik, M., Moora, M., Zobel, M., Espenberg, M., Mander, Ü., Khalid, A. N., Corrales, A., Agan, A., … Tedersoo, L. (2023). Connecting the multiple dimensions of global soil fungal diversity. Science Advances, 9(48), eadj8016. https://doi.org/10.1126/sciadv.adj8016
  29. Nalage, D., Kale, R., Sontakke, T., Pradhan, V., Biradar, A., Senevirathna, J. D. M., Jaweria, R., Dighe, T., Dixit, P., Patil, R., & Kudnar, P. S. (2024). Bacterial phyla: Microbiota of kingdom animalia. Academia Biology, 2(4). https://doi.org/10.20935/AcadBiol7423
  30. Nalage, D., Kudnar, P. S., Sontakke, T., Chittapure, I., Gowda, Y., Kharbal, S., & Alamwar, Y. (2024). Assessment of the status of Spodoptera species (Lepidoptera: Noctuidae: Armyworm) in India through DNA barcoding technique. Journal of Threatened Taxa, 16(7), 25528–25535. https://doi.org/10.11609/jott.8983.16.7.25528-25535
  31. Nalage, D., Sontakke, T., Biradar, A., Jogdand, V., Kale, R., Harke, S., Kale, R., & Dixit, P. (2023). The impact of environmental toxins on the animal gut microbiome and their potential to contribute to disease. Elsevier, 3(C).
  32. Nirmalkar, V. K., Lakplae, N., & Tiwari, R. K. S. (2020). Natural Occurrence and Distribution of Entomopathogenic Fungi from Chhattisgarh. International Journal of Current Microbiology and Applied Sciences, 9(1), 1990–1998. https://doi.org/10.20546/ijcmas.2020.901.225
  33. Patil, R., Satpute, R., & Nalage, D. (2023a). Plant microbiomes and their role in plant health. Microenvironment and Microecology Research, 5(1), 2. https://doi.org/10.53388/MMR2023002
  34. Patil, R., Satpute, R., & Nalage, D. (2023b). The application of omics technologies to toxicology. Toxicology Advances, 5(2), 6. https://doi.org/10.53388/TA202305006
  35. Punjabi, G., Jayadevan, A., Jamalabad, A., Velho, N., Niphadkar-Bandekar, M., Baidya, P., Jambhekar, R., Rangnekar, P., Dharwadkar, O., Lopez, R., Rodrigues, M., Patel, F. D., Chandra Sagar, H. S. S., Banerjee, S., Chandi, M., Mehrotra, N., Srinivasan, S., Shahi, S., Atkore, V., … Borkar, M. R. (2020). On the inadequacy of environment impact assessments for projects in Bhagwan Mahavir Wildlife Sanctuary and National Park of Goa, India: A peer review. Journal of Threatened Taxa, 12(18), 17387–17454. https://doi.org/10.11609/jott.6650.12.18.17387-17454
  36. Rahayu, D. A., Ambarwati, R., & Faizah, U. (2021). An effort to train the biological computation skill and teach animal phenetic taxonomy to pre-service biology teacher. Journal of Physics: Conference Series, 1747(1), 012001. https://doi.org/10.1088/1742-6596/1747/1/012001
  37. Sangal, V., Nieminen, L., Tucker, N. P., & Hoskisson, P. A. (2014). Revolutionizing Prokaryotic Systematics Through Next-Generation Sequencing. In Methods in Microbiology (Vol. 41, pp. 75–101). Elsevier. https://doi.org/10.1016/bs.mim.2014.07.001
  38. Santamaria, M. (2011). DNA barcoding of toxigenic fungi: A perspective. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed (pp. 349–356). Elsevier. https://doi.org/10.1533/9780857090973.4.349
  39. Schirawski, J., Perlin, M. H., & Saville, B. J. (2021). Smuts to the power of three: Biotechnology, biotrophy, and basic biology. Journal of Fungi, 7(8), 0–3. https://doi.org/10.3390/jof7080660
  40. Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9(SUPPL. 1), 83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.x
  41. Sharma, I. (2021). Phytopathogenic fungi and their biocontrol applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology (pp. 155–188). Elsevier. https://doi.org/10.1016/B978-0-12-821394-0.00007-X
  42. Singh, P. (2020). Floristic Diversity of India: An Overview. In G. H. Dar & A. A. Khuroo (Eds.), Biodiversity of the Himalaya: Jammu and Kashmir State (Vol. 18, pp. 41–69). Springer Singapore. https://doi.org/10.1007/978-981-32-9174-4_3
  43. Singh, P., & Sharma, M. (2020). Cultural and Morphological Characterization of Antagonistic Trichoderma Isolates. International Journal of Current Microbiology and Applied Sciences, 9(3), 1041–1048. https://doi.org/10.20546/ijcmas.2020.903.122
  44. Sontakke, T., Biradar, A., Dixit, P., & Nalage, D. (2022). Metagenomics and microbiome of infant: Old and recent instincts. Microenvironment and Microecology Research, 4(2), Article 2. https://doi.org/10.53388/MMR2022007
  45. Sontakke, T., Biradar, A., & Nalage, D. (2023). The role of genetics in determining resistance to coccidiosis in goats a review of current research and future directions. Molecular Biology Reports, 50(7), 6171–6175. https://doi.org/10.1007/s11033-023-08520-3
  46. Steinrucken, T. V., & Vitelli, J. S. (2023). Biocontrol of weedy Sporobolus grasses in Australia using fungal pathogens. BioControl, 68(4), 341–361. https://doi.org/10.1007/s10526-023-10195-5
  47. Steins, L., Duhamel, M., Klenner-Koch, S., Begerow, D., & Kemler, M. (2023). Resources and tools for studying convergent evolution in different lineages of smut fungi. Mycological Progress, 22(11), 76. https://doi.org/10.1007/s11557-023-01918-0
  48. Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688
  49. Tiknaik, A., Kalyankar, A., Shingare, M., Suryawanshi, R., Prakash, B., Sontakke, T. A., Nalage, D., Sanil, R., & Khedkar, G. (2019). Refutation of media reports on introduction of the red bellied piranha and potential impacts on aquatic biodiversity in India. Mitochondrial DNA Part A, 30(4), 643–650. https://doi.org/10.1080/24701394.2019.1611798
  50. Turgay, E. B., Oğuz, A. Ç., & Ölmez, F. (2020). Karnal bunt (Tilletia indica) in wheat. Climate Change and Food Security with Emphasis on Wheat, 1847, 229–241. https://doi.org/10.1016/B978-0-12-819527-7.00015-7
  51. Uikey, K. W., Raghuwanshi, K. S., & Uikey, D. W. (2020). Influence of Culture Media on Growth, Colony Character and Sporulation of Chaetomium globosum Fungus. International Journal of Current Microbiology and Applied Sciences, 9(5), 2567–2572. https://doi.org/10.20546/ijcmas.2020.905.293
  52. Vabeikhokhei, J. M. C., Mangaiha, Z., Zothanzama, J., & Lalrinawmi, H. (2019). Diversity Study of Wood Rotting Fungi from Two different Forests in Mizoram, India. International Journal of Current Microbiology and Applied Sciences, 8(04), 2775–2785. https://doi.org/10.20546/ijcmas.2019.804.323
  53. Vorob’eva, I., & Toropova, E. (2020). Fungi ecological niches of the genus Fusarium Link. BIO Web of Conferences, 24, 00095. https://doi.org/10.1051/bioconf/20202400095
  54. Xia, W., Yu, X., & Ye, Z. (2020). Smut fungal strategies for the successful infection. Microbial Pathogenesis, 142, 104039. https://doi.org/10.1016/j.micpath.2020.104039
  55. Yali, W. (2022). Molecular Markers: Their Importance, Types, and Applications in Modern Agriculture. Agriculture, Forestry and Fisheries, 11(1), 8. https://doi.org/10.11648/j.aff.20221101.12

56. Zhou, L., Mubeen, M., Iftikhar, Y., Zheng, H., Zhang, Z., Wen, J., Khan, R. A. A., Sajid, A., Solanki, M. K., Sohail, M. A., Kumar, A., Massoud, E. E. S., & Chen, L. (2024). Rice false smut pathogen: Implications for mycotoxin contamination, current status, and future perspectives. Frontiers in Microbiology, 15, 1344831. https://doi.org/10.3389/fmicb.2024.1344831

Smut fungi (Ustilaginales), obligate plant pathogens within the Basidiomycota phylum, play critical roles in ecology and agriculture. Known for their host specificity and production of black powdery teliospores, these fungi predominantly infect monocots, including economically vital crops like wheat, rice, maize, and sugarcane. Their global distribution and adaptability to diverse climates make them significant contributors to agricultural losses, impacting food security and trade. Traditional methods for identifying smut fungi, such as morphological and cultural analyses, are now complemented by molecular techniques like DNA barcoding, PCR, and next-generation sequencing (NGS). These advancements have refined fungal taxonomy, uncovered cryptic species, and elucidated evolutionary relationships, enhancing the accuracy of identification and ecological understanding. India, a biodiversity hotspot, reports 159 species of smut fungi, primarily targeting the Poaceae family. Despite advancements, gaps remain in understanding their biodiversity, pathogenic mechanisms, and responses to climate change. Addressing these challenges necessitates interdisciplinary research, integrating modern molecular tools with traditional approaches. This review underscores the importance of smut fungi research for developing sustainable disease management strategies. By fostering global collaboration and leveraging advanced techniques, researchers can mitigate the agricultural impact of smut fungi while exploring their ecological and biotechnological potential. Comprehensive studies are crucial for ensuring agricultural sustainability, biodiversity conservation, and enhanced food security in the face of emerging global challenges.

Keywords : Smut Fungi, Fungal Taxonomy, Plant Pathogens, Molecular Identification, Agricultural Sustainability.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe